1.12

- 1. a). Convince yourself that Poisson vector has nothing to do with the motion of the center of the mass. It's only related to the motion about the center of mass.
- b). Consider a ball is rotating about x-axis and it's center is fixed at the origin. The radius of this ball is 3m. At t_1 , the largest speed of the points on the surface of this ball is 6m/s. Find the expression of the Poisson vector at time t_1 . Assume the basis is the standard basis $\{\hat{i}, \hat{j}, \hat{k}\}$.

2.1

Assume we have one right-handed orthonormal basis $\{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ for \mathbb{E}^3 . Also we have one new orthonormal basis $\{\vec{e'_1}, \vec{e'_2}, \vec{e'_3}\}$. The angles between $\vec{e'_1}$ and $\vec{e_1}, \vec{e_2}$ are $\pi/3$, $\pi/6$ respectively. The angle between $\vec{e'_2}$ and $\vec{e_3}$ is $\pi/4$. $\vec{e'_2} \cdot \vec{e_2} > 0$.

- a). Find the direction cosines for $\vec{e'}_1$ with respect to the old basis.
- b). Find the components of $\vec{e'}_2$ with respect to the old basis.
- c). If the new basis is right-handed, find the coordinate of $\vec{e'}_3$ with respect to the old basis.
- d). Give the expression of the Q matrix defined in the notes in this section. What are the 1st, 2nd and 3rd rows?
- e). Check that $QQ^T = I$ where I is the identity matrix. Such matrix is called orthogonal matrix.
- f)(*). Does the answer to e) have anything to do with the fact that both basis are orthonormal?
- g)(*). Let $[x_1, x_2, x_3]^T$ be the coordinate of \vec{x} with respect to the old basis. We have the equations: $\vec{e'}_j \cdot \vec{x} = j$. Write out these equations explicitly. Can you write them in matrix form? Can you solve these equations by just taking the inverse of a suitable matrix?

2.2

#2 #3 #4 #5 #7 #8 #10 #11(*)

More: $\vec{a} = [2, 3, 4]^T$, $\vec{b} = [1, 0, 0]^T$, $\vec{c} = [0, 2, 4]^T$. Use the Gram-Schmidt procedure to orthonormalize them.