Hw 5

Math 321

This set of homework is more relevant to physics. Oops!

Exercises in 1.10

- 1. If $\vec{a}(t) = (e^{\tan t} \sec^2(t), \sqrt{t^2 + 1}, \frac{1}{(1 + t^2)^2})$ and $\vec{v}(0) = 0$, get the expression of \vec{v} .
- 2. A particle with charge q is moving in uniform magnetic field \vec{B} with initial velocity \vec{v}_0 , where $\vec{B} \perp \vec{v}_0$. Assume the Lorentz force $\vec{F} = q\vec{v} \times \vec{B}$ is the only force on the particle. Show that the particle is doing uniform rotation.
- 3. The exercise in "Uniform rotation" starting with ▷
- 4. Do the same problems if $\vec{\omega}$ is not a constant. (The direction is fixed).
- 5. Let's look at one application of the two conservation laws in central force problem. When I was in high school, I was very interested in such problems.

We know the gravitational force between two masses m_1, m_2 that acts on m_1 is

$$\vec{F} = \frac{Gm_1m_2}{r_{12}^2}\hat{r}_{12}$$

where \hat{r}_{12} points to m_2 . Now consider a planet which is orbiting around the sun. The mass of this planet is m and the mass of the sun is M. The orbit of the planet is an ellipse. Since $M \gg m$, we can consider the sun to be fixed. The force here on the planet is thus a central force, and then we have the two conservation laws.

- a). If the potential energy V(r) corresponding to the gravitational force at infinity is chosen to be 0, find the expressions of F(r) and V(r).
- b). Suppose the smallest distance between the sun and the planet is r_0 and the speed here is v_0 . Derive the the largest distance r_1 between the sun and the planet and the speed there v_1 .
- c)(*) Show that we must have $v_L = \sqrt{\frac{GM}{r_0}} < v_0 < \sqrt{\frac{2GM}{r_0}} = v_U$. (v_L and v_U are called the first and second cosmic speed respectively)
- d)(*) Use your force formula for rotation to argue that we can NOT have $\frac{GMm}{r_0^2} = m\frac{v_0^2}{r_0} = m\omega_0 r_0^2$ at the point where the planet is closest to the sun.

Exercises in 1.11

- 1. The exercise in this section.
- 2. A mass M with charge q was put at the origin in a uniform electic filed $\vec{E} = E\hat{x}$ when t=0. Assume the initial velocity was 0. At some time t_1 , the mass was splitted into two particles with different charges. At a later time t_2 , one of them with mass m was found to be at $2\hat{y}$. We assume $\{\hat{x}, \hat{y}, \hat{z}\}$ form an orthonormal right-handed basis. Find the position vector of the other particle at time t_2 if the electic forces were the only forces.

I'll give problems for 1.12 next time.