Hw 5
Math 321

This set of homework is more relevant to physics. Oops!

Exercises in 1.10

1. If $\vec{a}(t)=\left(e^{\tan t} \sec ^{2}(t), \sqrt{t^{2}+1}, \frac{1}{\left(1+t^{2}\right)^{2}}\right)$ and $\vec{v}(0)=0$, get the expression of \vec{v}.
2. A particle with charge q is moving in uniform magnetic field \vec{B} with initial velocity \vec{v}_{0}, where $\vec{B} \perp \vec{v}_{0}$. Assume the Lorentz force $\vec{F}=q \vec{v} \times \vec{B}$ is the only force on the particle. Show that the particle is doing uniform rotation.
3. The exercise in "Uniform rotation" starting with \triangleright
4. Do the same problems if $\vec{\omega}$ is not a constant. (The direction is fixed).
5. Let's look at one application of the two conservation laws in central force problem. When I was in high school, I was very interested in such problems.
We know the gravitational force between two masses m_{1}, m_{2} that acts on m_{1} is

$$
\vec{F}=\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{r}_{12}
$$

where \hat{r}_{12} points to m_{2}. Now consider a planet which is orbiting around the sun. The mass of this planet is m and the mass of the sun is M. The orbit of the planet is an ellipse. Since $M \gg m$, we can consider the sun to be fixed. The force here on the planet is thus a central force, and then we have the two conservation laws.
a). If the potential energy $V(r)$ corresponding to the gravitational force at infinity is chosen to be 0 , find the expressions of $F(r)$ and $V(r)$.
b). Suppose the smallest distance between the sun and the planet is r_{0} and the speed here is v_{0}. Derive the the largest distance r_{1} between the sun and the planet and the speed there v_{1}.
c) ${ }^{*}$) Show that we must have $v_{L}=\sqrt{\frac{G M}{r_{0}}}<v_{0}<\sqrt{\frac{2 G M}{r_{0}}}=v_{U}$. (v_{L} and v_{U} are called the first and second cosmic speed respectively)
d) (*) Use your force formula for rotation to argue that we can NOT have $\frac{G M m}{r_{0}^{2}}=m \frac{v_{0}^{2}}{r_{0}}=m \omega_{0} r_{0}^{2}$ at the point where the planet is closest to the sun.

Exercises in 1.11

1. The exercise in this section.
2. A mass M with charge q was put at the origin in a uniform electic filed $\vec{E}=E \hat{x}$ when $t=0$. Assume the initial velocity was 0 . At some time t_{1}, the mass was splitted into two particles with different charges. At a later time t_{2}, one of them with mass m was found to be at $2 \hat{y}$. We assume $\{\hat{x}, \hat{y}, \hat{z}\}$ form an orthonormal right-handed basis. Find the position vector of the other particle at time t_{2} if the electic forces were the only forces.

I'll give problems for 1.12 next time.

