Part of Hints for to Hw 3

Math 321

Section 1.6

2.(a). The final answer is a_{i}. I don't want to write the corresponding \sum notation here. However, if you are trying to understand Einstein's convention, you should do this.
(c). To overcome this difficulty, we can let $a_{i}=2, b_{j}=j$. Then use a_{i}, b_{j} and Einstein's convention to finish simplifying.
3. (a). $\epsilon_{j k l} a_{j}=\epsilon_{k l j} a_{j}$
(b). $a_{k} b_{i}-b_{k} a_{i}=2 k * i^{2}-2 * i k^{2}$
(c). (If I didn't make any mistakes)
$\epsilon_{m l q} c_{q} b_{l} a_{m}-\epsilon_{m l q} b_{m} a_{l} c_{q}=\epsilon_{m l q} c_{q} b_{l} a_{m}-\epsilon_{l m q} b_{l} a_{m} c_{q}=2 \epsilon_{m l q} c_{q} b_{l} a_{m}$ which is twice of a determinant.
(d). I'll show you the first as an example. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\left(a_{i} b_{j} \epsilon_{i j k} \vec{e}_{k}\right) \cdot\left(c_{p} d_{q} \epsilon_{p q r} \vec{e}_{r}\right)=$ $a_{i} b_{j} c_{p} d_{q} \delta_{k r} \epsilon_{i j k} \epsilon_{p q r}=a_{i} b_{j} c_{p} d_{q} \epsilon_{i j k} \epsilon_{p q k}=a_{i} b_{j} c_{p} d_{q}\left(\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}\right)=a_{i} c_{i} b_{j} d_{j}-a_{i} d_{i} b_{j} c_{j}$ This makes sense, because
$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=((\vec{c} \times \vec{d}) \times \vec{a}) \cdot \vec{b}=((\vec{c} \cdot \vec{a}) \vec{d}-(\vec{d} \cdot \vec{a}) \vec{c}) \cdot \vec{b}=(\vec{c} \cdot \vec{a})(\vec{d} \cdot \vec{b})-(\vec{d} \cdot \vec{a})(\vec{c} \cdot \vec{b})$

Section 1.7

1. $\operatorname{det}(\vec{a}, \vec{b}, \vec{c})=0$ means they are not linearly independent. $\neq 0$ means L.I.. In detail, >0 means right-handed and thus <0 means...
\#1. You add one more dimension \vec{e}_{3} to argue.
