Without declaration, we use Einstein's summation convention from now on.

Exercises in 1.6

- 1. #2
- 2. (a). Simplify $\delta_{ij}\delta_{jk}a_k$ and for each step write out the corresponding expression with \sum notation.
 - (b). We know $\delta_{11}^2 = \delta_{11}, \delta_{12}^2 = \delta_{12}$ etc, but why can't we have $\delta_{ij}\delta_{ij} = \delta_{ij}$?
 - (c). By Einstein's convention, does $i\vec{e_i}$ mean $\vec{e_1} + 2\vec{e_2} + 3\vec{e_3}$? Why? If you answer 'No', then how can you simplify $\vec{a} \times \vec{b}$ using Einstein's convention, where $\vec{a} = 2\vec{e_1} + 2\vec{e_2} + 2\vec{e_3}$ and $\vec{b} = \vec{e_1} + 2\vec{e_2} + 3\vec{e_3}$?
- 3. Simplify the following expressions.
 - (a). $\delta_{ij}\epsilon_{ikl}a_j$
 - (b). $\epsilon_{ijk}\epsilon_{jlm}a_lb_m$ where $a_l=2l,b_m=m^2$
 - (c). $\epsilon_{kji}a_ib_j\epsilon_{klm}\delta_{mp}\epsilon_{plq}c_q$
 - (d). $\vec{a} = a_i \vec{e}_i \ \vec{b} = b_i \vec{e}_i \ \vec{c} = c_i \vec{e}_i \ \vec{d} = d_i \vec{e}_i$. Here $\{\vec{e}_i\}$ is an orthonormal basis. Simplify $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ and $((\vec{a} \times \vec{b}) \times \vec{c}) \cdot \vec{d}$

Exercises in 1.7

- 1. Given $\vec{a}, \vec{b}, \vec{c}$ below, determine if they are linearly independent. If they are L.I., then in this order, are they right-handed or left-handed? (Hint: you only need to calculate $det(\vec{a}, \vec{b}, \vec{c})$ once to answer both questions.)
 - (a). $\vec{a} = (2, 1, 3), \vec{b} = (0, 1, 0), \vec{c} = (4, 5, 2)$
 - (b). $\vec{a} = (2, 1, 3), \vec{b} = (4, 5, 3), \vec{c} = (0, 2, 0)$
 - (c). $\vec{a} = (2, 1, 3), \vec{b} = (4, 5, 3), \vec{c} = (3, 3, 3)$
- 2. #1 #3 #4 #6 #7

Other problems in this section are also interesting, so I'll pick some of them in the next set of homework.