Without declaration, we use Einstein's summation convention from now on.

Exercises in 1.6

1. \#2
2. (a). Simplify $\delta_{i j} \delta_{j k} a_{k}$ and for each step write out the corresponding expression with \sum notation.
(b). We know $\delta_{11}^{2}=\delta_{11}, \delta_{12}^{2}=\delta_{12}$ etc, but why can't we have $\delta_{i j} \delta_{i j}=\delta_{i j}$?
(c). By Einstein's convention, does $i \vec{e}_{i}$ mean $\vec{e}_{1}+2 \vec{e}_{2}+3 \vec{e}_{3}$? Why? If you answer 'No', then how can you simplify $\vec{a} \times \vec{b}$ using Einstein's convention, where $\vec{a}=2 \vec{e}_{1}+2 \vec{e}_{2}+2 \vec{e}_{3}$ and $\vec{b}=\vec{e}_{1}+2 \vec{e}_{2}+3 \vec{e}_{3}$?
3. Simplify the following expressions.
(a). $\delta_{i j} \epsilon_{i k l} a_{j}$
(b). $\epsilon_{i j k} \epsilon_{j l m} a_{l} b_{m}$ where $a_{l}=2 l, b_{m}=m^{2}$
(c). $\epsilon_{k j i} a_{i} b_{j} \epsilon_{k l m} \delta_{m p} \epsilon_{p l q} c_{q}$
(d). $\vec{a}=a_{i} \vec{e}_{i} \vec{b}=b_{i} \vec{e}_{i} \vec{c}=c_{i} \vec{e}_{i} \vec{d}=d_{i} \vec{e}_{i}$. Here $\left\{\vec{e}_{i}\right\}$ is an orthonormal basis. Simplify $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ and $((\vec{a} \times \vec{b}) \times \vec{c}) \cdot \vec{d}$

Exercises in 1.7

1. Given $\vec{a}, \vec{b}, \vec{c}$ below, determine if they are linearly independent. If they are L.I., then in this order, are they right-handed or left-handed? (Hint: you only need to calculate $\operatorname{det}(\vec{a}, \vec{b}, \vec{c})$ once to answer both questions.)
(a). $\vec{a}=(2,1,3), \vec{b}=(0,1,0), \vec{c}=(4,5,2)$
(b). $\vec{a}=(2,1,3), \vec{b}=(4,5,3), \vec{c}=(0,2,0)$
(c). $\vec{a}=(2,1,3), \vec{b}=(4,5,3), \vec{c}=(3,3,3)$
2. $\# 1 \# 3 \# 4 \# 6 \# 7$

Other problems in this section are also interesting, so I'll pick some of them in the next set of homework.

