The problems with $*$ are for the ones who like math.

1 Exercises in 1.4

$\# 1 \# 2 \# 4$ (Use \sum notation) $\# 5$

Extra problems for this section

a. Repeat the proof of Cauchy - Schwarz property for dot-product in \mathbb{R}^{n} and write out the component form.
b. Find the angle between $(1,2,6,7)$ and $(2,5,9,1)$ in \mathbb{R}^{4}.
c. Define the dot product(inner product) of real valued continuous functions f, g on $[0,2 \pi]$ as

$$
\int_{0}^{2 \pi} f(x) g(x) d x
$$

Then prove the functions in $\{\cos n x, \sin n x\}$ are orthogonal to each other. (This is the basic things for Fourier series). Given an $f(x)$, find the component of f corresponding to $\cos 3 x$. d. Assume we have 5 quizzes this semester and your scores form a '5-tuplets' $\vec{x}=\left(x_{1}, \ldots, x_{5}\right)$. I define your average quiz score to be $\bar{x}=\frac{1}{5^{1 / p}}\|\vec{x}\|_{p}$ where $\|\cdot\|_{p}$ is the p-norm. Consider that your scores are $(8,9,7,5,10)$ and $p=1,2, \infty$. Calculate each average score corresponding to each p, which p would you like me to use? Why?

2 Exercises in 1.5

\#1 \#2 \#6 \#8
Extra exercise:
a. $\vec{a}=(1,2,3), \vec{b}=(4,3,1)$. Calculate $\vec{a} \times \vec{b}$ and the angle between them using dot product and cross product both.
$\left.{ }^{*}\right) \# 3$ in 1.5 .

