Some Hints for Hw 15

Math 321

By Lei Li

Easy problems

1. Ans: a). $e^{3 \pi i / 2}$ b). $2 e^{-i \pi / 3}$ c). $e^{i \pi}$ d). $\frac{1}{2} e^{i 0}$
2. a.IMPORTANT CONCLUSION. Figure out!
b. The answers to them all are 'NO'.
3. The hint is just to get $z^{n}=r e^{i \theta}$. Assume $z=\rho e^{i \alpha}$ find ρ and all possible α.
4. Determine if the integral of the fucntion over $C:|z|=1$ is zero or not.
a). $f(z)=z^{1000}+\sin z-(\mathrm{YES})$
b). $f(z)=\frac{\cos z}{z+3}$-(YES)
c). $f(z)=\frac{1}{\left(4 z^{2}+1\right)(z-7)}$ (NO)
d). $f(z)=\frac{8}{z^{2}-z+1 / 4}$-(YES)
5. ('Extra' omitted)
6. Solve $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x$:

For trig: $x=\tan \theta$ and then you'll get $\int_{-\pi / 2}^{\pi / 2} \frac{1+\cos (2 \theta)}{2} d \theta=\frac{\pi}{2}$
For complex, just refer to the notes. (We can see that real techniques are tricky while complex techniques recover the intrinsic properties of that function.)
2. \#3

Method is similar. $z^{4}+z^{2}+1=0 . z^{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i=e^{i 2 \pi / 3}, e^{i 4 \pi / 3}$ and then you can see that your singularities would be $e^{i \pi / 3}, e^{i 4 \pi / 3}, e^{i 2 \pi / 3}, e^{i 5 \pi / 3}$. That means the denominator can be factored as $\left(z-e^{i \pi / 3}\right)\left(z-e^{i 2 \pi / 3}\right)\left(z-e^{i 4 \pi / 3}\right)\left(z-e^{i 5 \pi / 3}\right)$
3. \#5: Nice challenging problem. Follow the hint on the notes. You should know how to get $\int_{0}^{+\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$. The answer is $\int_{-\infty}^{+\infty} \cos x^{2} d x=\int_{-\infty}^{+\infty} \sin x^{2} d x=\sqrt{\frac{\pi}{2}}$

