Hw 15(Two pages)

Math 321

Easy problems

1. Write those complex numbers in polar form.
a). $-i$
b). $1-\sqrt{3} i$
c). -1 d). $1 / 2$
2. a. If $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytical, show that both u and v are harmonic functions.
b. For the following u, is it possible to find the conjugate function v such that $u+i v$ is analytical?
$u(x)=4 \tan ^{3}(x), u(x)=3 x^{2} y+9 x y^{100}, u(x, y)=g(x+y)$ where $g^{\prime \prime}(u)$ is nice and nonzero.
3. Solve the following equations:
a). $z^{3}+8=0$
b). $z^{4}+6 z^{2}+8=0$
c). $3 z^{2}=i$
4. Determine if the integral of the fucntion over $C:|z|=1$ is zero or not.
a). $f(z)=z^{1000}+\sin z$
b). $f(z)=\frac{\cos z}{z+3}$
c). $f(z)=\frac{1}{\left(4 z^{2}+1\right)(z-7)}$
d). $f(z)=\frac{8}{z^{2}-z+1 / 4}$
5. Parametrize these:
a). The graph of $f(x)=\frac{1}{x^{2}+1}$. Find the formula to calculate length.
b). The surface of the Earth inside the Tropic of Cancer. Find the area element.(You can use R to mean the radius of the earth).
c). The area inside the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Find the area element and write out the integral for the area.
d). The cylinder under $z=\sqrt{x^{2}+y^{2}}$ and above $z=-\left(x^{2}+y^{2}\right)$ centered at $x=y=0$ with radius 1 . Find the volume.
e). Parametriz the surface of $z=h(x, y)=x^{2}-y^{2}$. Are your parameters orthogonal parameters?
6. Solve $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x$ using trig-substitution and complex integral both. Compare these two methods.
7. \#3
8. $\# 5$
