Some Hints for Hw 14

Math 321

By Lei Li

3.2

1. \#4 The series is $\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}$. You can see that it has singularities at $\pm i$. The distance between the center and $\pm i$ is just the radius of convergence.
\#7: use the Taylor series or the generalized Cauchy's formula. $\left.\frac{2 \pi i}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} \cos z\right|_{z=0}$ and similar thing for the second one. The derivative in the first one is 0 when n even and ± 1 otherwise.
2. Calculate $\int_{|z|=4} \frac{1}{(z+1)(z-1)(z+2 i)} d z$ without calculating the partial fraction expressions.

Ans: $2 \pi i\left(\frac{1}{-2(-1+2 i)}+\frac{1}{2(1+2 i)}+\frac{1}{(-2 i+1)(-2 i-1)}\right)$ and you should simplify
3. Calculate $\int_{|z|=2} \frac{1}{z(z+3)^{2}} d z$ and $\int_{|z|=2} \frac{1}{z^{2}(z+3)} d z$

Ans: The first one is $2 \pi i / 9$ and the second one is $-2 \pi i / 9$
4. Calculate $\int_{|z|=3} \frac{e^{z}}{(z-2)^{3}} d z$

Ans: $\pi i e^{2}$
5. Calculate $\int_{|z|=2} \frac{\sin z}{z^{2}+1} d z$

Ans: $2 \pi \sin i$
6. $\left(^{*}\right)$ (Challenging problems)
(This one could be really hard for you)Calculate $\int_{|z|=1 / 2} \frac{e^{z}}{\sin (2 z)} d z$
Ans: Hint: $\frac{g(z)}{z} \cdot g(z)=\frac{e^{z} z}{\sin (2 z)}$ is analytical within the contour $(\sin (2 z)=0$ only at 0 inside this small circle, and other zeros are outside of this circel.) $g(0)=1 / 2$. Ans is πi

1. Calculate $\int_{0}^{2 \pi} \frac{1}{2-\sin \theta} d \theta$ (Hint: On unit circle, $\sin \theta=\frac{z-z^{-1}}{2 i}$)

Ans: On unit circle, this integral becomes: $\int_{C} \frac{1}{2-\left(z-z^{-1}\right) /(2 i)} \frac{d z}{i z}=-2 \int_{C} \frac{1}{z^{2}-4 i z-1} d z$.
The denominator can be factored as $(z-(2+\sqrt{3}) i)(z-(2-\sqrt{3}) i)$. Only one root is inside the circle. The anser is $-2(2 \pi i) \frac{1}{(2-\sqrt{3}) i-(2+\sqrt{3}) i}=2 \pi / \sqrt{3}$
2. $\# 1$ (Just consider the case $a>b>0$)

I guess the answer is $2 \pi / \sqrt{a^{2}-b^{2}}$. Method is the same.
3. Redo the integral $\int_{-\infty}^{+\infty} \frac{1}{x^{4}+1} d x$ to make sure you understand.
4. Calculate $\int_{0}^{+\infty} \frac{\cos x}{x^{2}+1} d x$.

Ans: Calculate $\int_{C} \frac{e^{i z}}{z^{2}+1} d z$. We can see we only have one singularity inside the contour.
The pole is simple. We get the answer $2 \pi i \frac{e^{i * i}}{i+i}=\pi e^{-1}$ for this complex integral.
We then prove that the integral on the semi-circle goes to zero.

$$
\begin{aligned}
\left|\int_{C_{2}} \frac{e^{i z}}{z^{2}+1} d z\right| & =\left|\int_{0}^{\pi} \frac{\left(e^{-R \sin \theta} e^{i R \cos \theta}\right)}{R^{2} e^{i 2 \theta}+1} i R e^{i \theta} d \theta\right| \\
& \leq \int_{0}^{\pi} \frac{R e^{-R \sin \theta}}{R^{2}-1} d \theta \\
& \leq \int_{0}^{\pi} \frac{R}{R^{2}-1} d \theta \rightarrow 0
\end{aligned}
$$

We thus have:

$$
\int_{-\infty}^{+\infty} \frac{\cos x}{x^{2}+1} d x=\operatorname{Re}\left(\pi e^{-1}\right)=\pi e^{-1}
$$

The original integral is $\pi e^{-1} / 2$

