Part of Hints for Hw 13

Math 321

By Lei Li

1.5

1. Use the ratio test. Center is $1 / 2$. Radius is 1 . Then the domain of convergence is a disk with radius one centered at $1 / 2$
2. \#4: The series is $\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}$. Radius of convergence is 1 .
\#5: $\frac{1}{z}=\frac{1}{2+(z-2)}=\frac{1}{2} \frac{1}{1+(z-2) / 2}=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{z-2}{2}\right)^{n}=\ldots$

1.6

\#2: (I'm not doing using series.) $\exp (i)=\cos 1+i \sin 1$.
$\cos (i)=\frac{1}{2}\left(e^{i * i}+e^{-i * i}\right)=\frac{1}{2}\left(e^{-1}+e\right)$ and you can get similar expression for $\sin (i)$ \#4: $\exp (-i \bar{z})$
\#5: We have $(35)+i(36)=\sum_{n=0}^{N} e^{i n x}=\frac{1-e^{i N x}}{1-e^{i x}}=\frac{\left(1-e^{i N x}\right)\left(1-e^{-i x}\right)}{2-2 \cos x}$. The real part of this expression is (35) and the imaginary part is (36)

$1.7+1.8$

1. $1+\sqrt{3} i=2 e^{i \pi / 3}$ and $i=e^{i \pi / 2}$. Square roots for the first: $\sqrt{2} e^{i \pi / 6}$ and $\sqrt{2} e^{i 7 \pi / 6}$. For the second: $\sqrt{i}=\left\{e^{i \pi / 4}=\frac{\sqrt{2}}{2}(1+i), e^{i 5 \pi / 4}=\frac{\sqrt{2}}{2}(1-i)\right\}$
2. Calculate $\ln (1+\sqrt{3} i)=\ln 2+i \pi / 3$ and $\ln (i)=i \pi / 2$

(The following problems are more important)

2.1

Given $u(x, y)$ find the conjugate function $v(x, y)$ such that $u(x, y)+i v(x, y)$ is analytical (namely $u(x, y)+i v(x, y)$ can be written as a function $f(z)$ and $f^{\prime}(z)$ exists in the domain we are interested in). Find $f(z)$.
a). $u=x+y$
b). $u=2 x^{2}-2 y^{2}+2 x+3$
c). $u=e^{x} \cos (y)$

Ans: All we need is Cauchy-Riemann formula. I'll do b) as an example.
a). $v=y-x+C$ and thus $u+i v=z-i z+i C=(1-i) z+C^{\prime}$
b). $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=4 x+2$. Then $v(x, y)=4 x y+2 y+g(x)$. $\partial v / \partial x=4 y+g^{\prime}(x)=-\partial u / \partial y=4 y$. $g^{\prime}(x)=0$ and thus $g(x)=C . u+i v=2 x^{2}-2 y^{2}+i 4 x y+2 x+2 i y+3+C^{\prime}$. The highest order is $2 x^{2}$ and we thus guess we have $2 z^{2}$. Subtract this and you'll have only $2(x+i y)+3+C^{\prime}$. Ans is $2 z^{2}+2 z+3+C^{\prime}$ where C^{\prime} is pure imaginary.
c). $e^{z}+i C$

3.1

1. $\# 1: 4 \pi i$
\#5: $2 i \pi / 3$
\#8: No.
$((*) \# 10)$: Think about where the power series fails.
2. Calculate $\int_{|z|=2} \bar{z} d z=8 \pi i$
3. (*) (For smart guys) $\int_{|z|=1} \frac{\sin z}{z} d z=0$.
$\int_{|z|=2} \frac{\sin i}{z^{2}+1} d z$. Hint: $\frac{1}{z^{2}+1}=\frac{1}{2 i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right)$
