1.5

1. Find the radius of convergence for $\sum_{n=1}^{\infty} \frac{(z-1 / 2)^{n} 2^{n}}{\left(n^{2}+1\right)(2+1 / n)^{n}}$
2. $\# 4, \# 5$

1.6

\#2(interesting problem, you should do it) \#4 \#5

$1.7+1.8$

1. Write $1+\sqrt{3} i$ and i in polar form. Then use these polar forms to calculate all the square roots of them.
2. Calculate $\ln (1+\sqrt{3} i)$ and $\ln (i)$
(The following problems are more important)

2.1

Given $u(x, y)$ find the conjugate function $v(x, y)$ such that $u(x, y)+i v(x, y)$ is analytical (namely $u(x, y)+i v(x, y)$ can be written as a function $f(z)$ and $f^{\prime}(z)$ exists in the domain we are interested in). Find $f(z)$.
a). $u=x+y$
b). $u=2 x^{2}-2 y^{2}+2 x+3$
c). $u=e^{x} \cos (y)$

3.1

1. $\# 1 \# 5 \# 8((*) \# 10)$
2. Calculate $\int_{|z|=2} \bar{z} d z$
3. (*) (For smart guys) Calculate $\int_{|z|=1} \frac{\sin z}{z} d z$ and $\int_{|z|=2} \frac{\sin i}{z^{2}+1} d z$
