Some easy problems

1. Consider $f(x, y, z)$, we know $d f=d \vec{r} \cdot \nabla f$.
a). Get the expression of $d f$ explicitly using Catesian coordinates.
b). If $x=x(t), y=y(t), z=z(t)$, get $\frac{d f}{d t}$
2. Consider $\vec{v}(x, y, z)=x^{2} \vec{e}_{x}$
a). Calculate $\nabla \cdot \vec{v}$
b). Write \vec{v} as $u(r, \theta, \varphi) \hat{r}+v(r, \theta, \varphi) \hat{\theta}+w(r, \theta, \varphi) \hat{\varphi}$ where we use spherical coordinates now.
c). Use the fact that $\nabla=\hat{r} \frac{\partial}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\varphi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}$ to get $\nabla \cdot \vec{v}$ in spherical coordinate form.

Compare your answer to a).

Challenging problems

3. Mimic what we did for spherical coordinate to get ∇ in cylindrical coordinate form.
4. Get $\Delta=\nabla \cdot \nabla$ in spherical coordiante form. (You know in Cartesian form
$\left.\Delta=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}\right)$

3.6

${ }^{(*)}$ For smart guys: Calculate $\int_{S} x^{2} d S$ where S is the sphere $x^{2}+y^{2}+z^{2}=4$.
Hint: use the fact that $\int_{S} x^{2} d S=\int_{S} y^{2} d S=\int_{S} z^{2} d S$ if the region is symmetric. Add them together and use Gauss's theorem!

3.7

\#1 \#8 (Do them in two ways to see how the theorems work.)
\#1 \#2 in 'Gradient' notes.
Problems for complex numbers in next page.

Part 3 Complex Calculus

1.1

All problems.

1.3

1. When does this series converge $\sum_{n=1}^{\infty} \frac{z^{n} \cos (n \pi)}{e^{n}}$? When it converges, what is the sum?
2. Calculate $\sum_{n=1}^{N} \cos (n \theta)$ and $\sum_{n=1}^{N} \sin (n \theta)$ by noticing that if $z=e^{i \theta}$, then $\cos (n \theta)+i \sin (n \theta)=e^{i n \theta}=z^{n}$
