Part of Hints for Hw 10

Math 321

By Lei Li

One important concept problem

- b). $d\vec{r} \cdot \vec{e}_x = (dx\vec{e}_x + dy\vec{e}_y) \cdot \vec{e}_x = dx$. In the cases, dx = x'(t)dt and dx = x'(y)dy. Similar for dy
- c). Just use the relationship $\hat{n} = \hat{t} \times \vec{e}_z$

3.4

1. You would get -2Area(A). Area of the triagle can be calculated using \overrightarrow{AB} and \overrightarrow{AC} .

$$-\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S} = -\int_{S} (-\frac{\partial \vec{B}}{\partial t}) \cdot d\vec{S} = \int_{S} \nabla \times \vec{E} \cdot d\vec{S} = LHS$$

3.5

The correct formula would be:

$$\int_C F \hat{s} \cdot n dr = \int_A \nabla \cdot (F \hat{s}) dA$$

by (106). You can see that $\nabla \cdot (F\hat{s})$ equals $\frac{\partial F}{\partial s}$ only if \hat{s} is constant. Otherwise, we would have $\frac{\partial F}{\partial s} + F \nabla \cdot \hat{s}$ instead.

3.6

c). Gauss's theorem is always correct. Here, the problem is at r = 0. There, the divergence of \vec{v} is infinity and the integral can be nonzero.

More problems for 3.5 in next set of homework problems.