Part of Hints for Hw 10

Math 321

By Lei Li

One important concept problem

b). $d \vec{r} \cdot \vec{e}_{x}=\left(d x \vec{e}_{x}+d y \vec{e}_{y}\right) \cdot \vec{e}_{x}=d x$. In the cases, $d x=x^{\prime}(t) d t$ and $d x=x^{\prime}(y) d y$. Similar for $d y$
c). Just use the relationship $\hat{n}=\hat{t} \times \vec{e}_{z}$

3.4

1. You would get $-2 \operatorname{Area}(A)$. Area of the triagle can be calculated using $\overrightarrow{A B}$ and $\overrightarrow{A C}$. 2.

$$
-\frac{d}{d t} \int_{S} \vec{B} \cdot d \vec{S}=-\int_{S}\left(-\frac{\partial \vec{B}}{\partial t}\right) \cdot d \vec{S}=\int_{S} \nabla \times \vec{E} \cdot d \vec{S}=L H S
$$

3.5

The correct formula would be:

$$
\int_{C} F \hat{s} \cdot n d r=\int_{A} \nabla \cdot(F \hat{s}) d A
$$

by (106). You can see that $\nabla \cdot(F \hat{s})$ equals $\frac{\partial F}{\partial s}$ only if \hat{s} is constant. Otherwise, we would have $\frac{\partial F}{\partial s}+F \nabla \cdot \hat{s}$ instead.

3.6

c). Gauss's theorem is always correct. Here, the problem is at $r=0$. There, the divergence of \vec{v} is infinity and the integral can be nonzero.

More problems for 3.5 in next set of homework problems.

