Part of Hints for Hw 10

Math 321

By Lei Li

Some easy problems

1. c). Here, I just calculate the Jacobian:

$$
\begin{aligned}
J=\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)} & =\left|\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \\
r \cos \theta \cos \varphi & r \cos \theta \sin \varphi & -r \sin \theta \\
-r \sin \theta \sin \varphi & r \sin \theta \cos \varphi & 0
\end{array}\right|=r^{2} \sin \theta
\end{aligned}
$$

2. b). $\nabla f=(2,6,-8)$
c). $(\vec{r}-(1,1,1)) \cdot \nabla f=0$
d). $\nabla f \cdot(2,1,1) / \sqrt{6}=$?
3. a). $\vec{v}=\vec{\nabla} f=\frac{1}{r^{2}} \nabla r=\frac{\vec{r}}{r^{3}}=$?
b). 0 for $r \neq 0$

1.7.2

\#1: Suppose the region is D. Then the area is $\int_{D} d x d y$. However, it's hard to evaluate directly. We use new variables $u=x y, v=y / x$. We can caluclate the area in the first quadrant and times 2. For the region in the first quadrant, $x=\sqrt{u / v}$ and $y=\sqrt{u v}$. Then, the area becomes $2 \int_{\alpha_{1}}^{\alpha_{2}} \int_{\beta_{1}}^{\beta_{2}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$
\#5: If we use the polar coordinate, we know $\frac{\partial(x, y)}{\partial(r, \theta)}=r$. Then, the original integral can be reduced to $\int_{\theta} \int_{r} e^{-r^{2}} \mid$ Jacobian $\mid d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\pi$
Thus, we get $\int_{x} \int_{y} e^{-x^{2}-y^{2}} d x d y=\pi$. However, the left hand side equals $\left(\int e^{-x^{2}} d x\right)^{2}$ so, $\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}$

2.4

\#5. I should give an answer to you for this problem. But, I can't get the answer directly by looking at this problem. Maybe, I'll calculate this later and write it here. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})$
\#9. I don't know which way is 'quick'. I'll do like this: $\vec{B}=\frac{(-y, x, 0)}{x^{2}+y^{2}}$. Then, $\operatorname{div} \vec{B}=\operatorname{grad}\left(\frac{1}{x^{2}+y^{2}}\right) \cdot(-y, x, 0)+\frac{\operatorname{div}(-y, x, 0)}{x^{2}+y^{2}}=0$
$\operatorname{curl} \vec{B}=\operatorname{grad}\left(\frac{1}{x^{2}+y^{2}}\right) \times(-y, x, 0)+\frac{\operatorname{curl}(-y, x, 0)}{x^{2}+y^{2}}=-2 \frac{1}{\rho^{4}} \vec{\rho} \times(-y, x, 0)+\frac{2 \overrightarrow{e_{z}}}{\rho^{2}}=-2 \frac{\rho^{2} e_{z}}{\rho^{4}}+\frac{2 \vec{e}_{z}}{\rho^{2}}=0$. Where $\vec{\rho}=(x, y, 0)$. Both identities hold for $x^{2}+y^{2} \neq 0$.

Notes:In our model here, we have a line current along z-axis. Then, we know the magnetic field and electirc field should be constant. There's no current density outside z and that's why we get 0 for both (this can be determined by Gauss's law for magnetism and Ampere's circuital law). As what happened at z, it's impossible to explain clearly to you.

