Without specific declaration, the scalar set is always $\mathbb{R}$, i.e. the set of all real numbers. The problems with $*$ are for the ones who like math.

## 1 Exercises in 1.1

\#3 \#4

## 2 Exercises in 1.2

$\# 3$ (Actually, for a very special vector $\vec{b}$, this would be a vector space). \#6 \#7 \#10(Note here we pick scalars from $\mathbb{R}$ )

## 3 Exercises in 1.3

\#1, \#2, \#6 \#9

## 4 Extra exercises

1. What are the dimensions of the following two vector spaces? Why?
a). $V=\{(0,0)\}$ as a subspace of $\mathbb{R}^{2}$.
b). $V=\{\alpha \vec{a}+\beta \vec{b}, \vec{a}=(1,2), \vec{b}=(2,4)\}$.
2. $\left(^{*}\right)$ If the scalars are picked from $\mathbb{C}$ instead of $\mathbb{R}$, what's the dimension of $\mathbb{C}^{n}$ ?
3. $\left.{ }^{*}\right)$ For fun. Consider the set of solutions to the differential equation $y^{\prime \prime}-2 y^{\prime}-8 y=0$. Is this set a vector space? What's the dimension? Find a basis for it. Find the component of the solution satisfying $y(0)=0, y^{\prime}(0)=1$ with respect to the basis you choose.
If the equation is $y^{\prime \prime}-2 y^{\prime}-8 y=1$, answer the questions once again.
4. (*)Think about \#11 in exercises 1.2.
