Hw 1

Math 321

Without specific declaration, the scalar set is always \mathbb{R} , i.e. the set of all real numbers. The problems with * are for the ones who like math.

1 Exercises in 1.1

#3 #4

2 Exercises in 1.2

#3 (Actually, for a very special vector \vec{b} , this would be a vector space). #6 #7 #10(Note here we pick scalars from \mathbb{R})

3 Exercises in 1.3

#1, #2, #6 #9

4 Extra exercises

- 1. What are the dimensions of the following two vector spaces? Why?
 - a). $V = \{(0,0)\}$ as a subspace of \mathbb{R}^2 .
 - b). $V = \{\alpha \vec{a} + \beta \vec{b}, \vec{a} = (1, 2), \vec{b} = (2, 4)\}.$
- 2. (*)If the scalars are picked from \mathbb{C} instead of \mathbb{R} , what's the dimension of \mathbb{C}^n ?
- 3. (*)For fun. Consider the set of solutions to the differential equation y'' 2y' 8y = 0. Is this set a vector space? What's the dimension? Find a basis for it. Find the component of the solution satisfying y(0) = 0, y'(0) = 1 with respect to the basis you choose.

If the equation is y'' - 2y' - 8y = 1, answer the questions once again.

4. (*)Think about #11 in exercises 1.2.