Solutions to Quiz 2

Below $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}=r \hat{r}$ is a function of a parameter t.
1). True or false? Explain. a. $\dot{\vec{r}}=\dot{r} \hat{r}$. b. $|d \vec{r} / d t|=d|\vec{r}| / d t=\dot{r}(6)$
a. False. Right hand side is parallel to \vec{r} while the derivative of \vec{r} (or velocity) doesn't have to be. More rigorously:

$$
\dot{\vec{r}}=\dot{r} \hat{r}+r \frac{d}{d t} \hat{r}
$$

The second term is not necessarily zero. Example, the uniform rotation, the second is nonzero. Actually, one can even check $\frac{d}{d t} \hat{r} \perp \hat{r}$. This means the first term is the component parallel to \vec{r} while the second term is perpendicular to \vec{r}. The problem throws away the perp part.
b. False. Left hand side is speed while the right hand side is just the changing rate of r. Actually, \dot{r} is just the radius part of $d \vec{r} / d t$. Namely, we have:

$$
\dot{r}=\hat{r} \cdot \frac{d}{d t} \vec{r}
$$

This can be verified by the formula we derived in (a). One can even check:

$$
\left|\frac{d}{d t} \vec{r}\right|=\sqrt{(\dot{r})^{2}+r^{2}|d \hat{r} / d t|^{2}}
$$

2). Writing $\dot{\vec{r}}=\vec{v}=v_{r} \hat{r}+\vec{v}_{\perp}, v_{r}=\vec{v} \cdot \hat{r}$. Then show $\dot{r}=v_{r}$ using $\vec{r} \cdot \vec{r}=r^{2}$. (4')

Soln: First way is to use what we get in 1.a.

$$
\dot{\vec{r}}=\dot{r} \hat{r}+r \frac{d}{d t} \hat{r}
$$

We have verified that $\hat{r} \cdot \frac{d}{d t} \hat{r}=0$. We then just dot this expression with \hat{r} and get:

$$
\hat{r} \cdot \frac{d}{d t} \vec{r}=\dot{r}
$$

The left hand side is v_{r} exactly.
Second way is to make use of $\vec{r} \cdot \vec{r}=r^{2}$. We take derivatives on both sides:

$$
2 \vec{r} \cdot \frac{d}{d t} \vec{r}=2 r \dot{r}
$$

Divide by $2 r$ and you get what you need.
(Bonus) If $\dot{\vec{r}}=\vec{\omega} \times \vec{r}$, show that $|\vec{r}|$ won't change. (Notice $\vec{\omega}$ also depends on t. In homework, you are even required to solve $\vec{r}(t)$ for the case where $\vec{\omega}$ is a constant.). (2') Ans: To check it doesn't change, we just take derivative on it.

$$
\frac{d}{d t}|\vec{r}|^{2}=2 \vec{r} \cdot \frac{d}{d t} \vec{r}=2 \vec{r} \cdot(\vec{\omega} \times \vec{r})=0
$$

