Solutions to Quiz 2

- Consider $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})$. Our goal is to write it in terms of dot products only.
1). Use vector identity to do this. (4')

Soln: Applying the property $(\vec{u} \times \vec{v}) \cdot \vec{w}=\vec{u} \cdot(\vec{v} \times \vec{w})$ here, we know:

$$
\begin{aligned}
(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b}) & =\vec{a} \cdot(\vec{b} \times(\vec{a} \times \vec{b})) \\
& =\vec{a} \cdot((\vec{b} \cdot \vec{b}) \vec{a}-(\vec{b} \cdot \vec{a}) \vec{b}) \\
& =(\vec{b} \cdot \vec{b})(\vec{a} \cdot \vec{a})-(\vec{b} \cdot \vec{a})(\vec{a} \cdot \vec{b})
\end{aligned}
$$

2). Use index notation. (6')

Ans: Using the fact $\vec{a} \times \vec{b}=\epsilon_{i j k} a_{i} b_{j} \vec{e}_{k}$, we have the original expression equal to:

$$
\begin{aligned}
& \left(\epsilon_{i j k} a_{i} b_{j} \vec{e}_{k}\right) \cdot\left(\epsilon_{l m n} a_{l} b_{m} \vec{e}_{n}\right)=\epsilon_{i j k} a_{i} b_{j} \epsilon_{l m n} a_{l} b_{m} \delta_{n k}=\epsilon_{i j k} \epsilon_{l m k} a_{i} b_{j} a_{l} b_{m} \\
& \left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) a_{i} b_{j} a_{l} b_{m}=a_{i} b_{j} a_{i} b_{j}-a_{i} b_{j} a_{j} b_{i}=(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})^{2}
\end{aligned}
$$

- (Bonus) Show that $\epsilon_{j k i} a_{i} a_{k}$ is 0 . (3')

Ans: Method 1:

$$
\begin{aligned}
& \epsilon_{j k i} a_{i} a_{k}=\epsilon_{k i j} a_{i} a_{k}=\epsilon_{k i j} a_{k} a_{i} \\
& =(\vec{a} \times \vec{a})_{j}=(\vec{a} \times \vec{a}) \cdot \vec{e}_{j}=0
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
& \epsilon_{j k i} a_{i} a_{k}=\epsilon_{j i k} a_{k} a_{i} \quad \text { changing dummies } \\
& =-\epsilon_{j k i} a_{k} a_{i} \quad \text { property of } \epsilon
\end{aligned}
$$

This means what we want to calculate equals -1 times itself. This number must be 0

