Solutions to Quiz 1

As in the figure below, $\overline{O D}=1, \varphi=\pi / 4, \theta=\pi / 6$.
1). Write out the position vector of P in spherical representation (Don't use \hat{x}, \hat{y} etc). (3')
2). Obtain the expression of \hat{r} in terms of $\hat{x}, \hat{y}, \hat{z}\left(7^{\prime}\right)$
3). (Bonus) Find the components of $\overrightarrow{O D}$ with respect to $\{\overrightarrow{O P}, \hat{z}\}$ (3')

Ans: 1). We can see that

$$
\overline{O D}=\overline{O P} \sin \theta \Rightarrow \overline{O P}=1 / \sin (\pi / 6)=2
$$

Thus, we have

$$
\vec{r}=2 \hat{r}
$$

(Note: \hat{r} is a directional vector in spherical representation.)
2).

$$
\hat{r}=\sin \theta \cos \varphi \hat{x}+\sin \theta \sin \varphi \hat{y}+\cos \theta \hat{z}=\frac{\sqrt{2}}{4} \hat{x}+\frac{\sqrt{2}}{4} \hat{y}+\frac{\sqrt{3}}{2} \hat{z}
$$

3). Actually, it's easy to see

$$
\overrightarrow{O D}=\overrightarrow{O P}-\overrightarrow{D P}=\overrightarrow{O P}-2 * \frac{\sqrt{3}}{2} \hat{z}
$$

The components are 1 and $-\sqrt{3}$. (You can also draw a parallelogram to see similar relationship.)

