Some Hints for HW2

Lei Li

Points:

1. Linear combinations. Linearly independent. Basis, orthonormal basis. Components of vector with respect to a basis.
2. System of coordinate (vector basis+reference point). Position/radius vector (\vec{r}).

Equations of lines and planes.

Hw2

3. A vector basis for a space is a set of linearly independent vectors. Any other vector in that space could be written as a linear combination of them. (One corollary is that the number of vectors in basis is the largest possible number of independent vectors in this space.)
4. Suppose the parallelogram is $A B C D$. The intersection of $A C$ and $B D$ is P. Let $\overrightarrow{A B}=\vec{a}_{1}$ and $\overrightarrow{A D}=\vec{a}_{2}$. We should represent $\overrightarrow{A P}$ in two independent ways.
The first way: $\overrightarrow{A P}$ is parallel to $\overrightarrow{A C}$. Then $\overrightarrow{A P}=t \overrightarrow{A C}=t\left(\vec{a}_{1}+\vec{a}_{2}\right)$
The second way: It's $\overrightarrow{A B}+\overrightarrow{B P}=\vec{a}_{1}+s \overrightarrow{B D}=\vec{a}_{1}+s\left(-\vec{a}_{1}+\vec{a}_{2}\right)$.
Setting them equal, we get:

$$
\begin{aligned}
t & =1-s \\
t & =s
\end{aligned}
$$

This means $s=t=1 / 2 . \overrightarrow{A P}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right)$ which means P is the midpoint of $A C$. Similarly, you can show that P is the midpoint of $B D$
6. Label the three points as $A(1,2,3), B(2,3,1), C(3,2,1)$. Denote $\vec{a}_{1}=\overrightarrow{A B}, \vec{a}_{2}=\overrightarrow{A C}$. Any point P in the plane can be determined by $\overrightarrow{A P}=s \vec{a}_{1}+t \vec{a}_{2}$. However, if we don't put constraint on s, t, we just get the whole plane. It's obvious $s \geq 0, t \geq 0$.
We can see that the points on $B C$ are special. They are the farthest we could go. Let Q be a point on the line segment $B C \cdot \overrightarrow{A Q}=s^{\prime} \vec{a}_{1}+t^{\prime} \vec{a}_{2}$. Because it's on $B C$, we then $\overrightarrow{A Q}=\vec{a}_{1}+\lambda\left(-\vec{a}_{1}+\vec{a}_{2}\right)=(1-\lambda) \vec{a}_{1}+\lambda \vec{a}_{2}$. This means $s^{\prime}+t^{\prime}=(1-\lambda)+\lambda=1$. For an arbitrary point inside the triangle, $s+t$ can only be smaller. Then, we should have $s+t \leq 1$.
To sum up:

$$
\begin{aligned}
& s \geq 0 \\
& t \geq 0 \\
& s+t \leq 1
\end{aligned}
$$

Then, we have the relationship:

$$
\begin{aligned}
& <x-1, y-2, z-3>=s<1,1,-2>+t<2,0,-2> \\
& x=1+s+2 t \\
& y=2+s \\
& z=3-2 s-2 t
\end{aligned}
$$

with the constraint above
7. The line $A B$ could be described by:

$$
\vec{r}=\vec{r}_{A}+t\left(\vec{r}_{B}-\vec{r}_{A}\right)
$$

To show that point is on this line, we just need to show that the vector satisfies this equation. Compare the coefficients, and we want to try $t=\beta /(\alpha+\beta)$. Plug this in and we get:

$$
\vec{r}=\vec{r}_{A}+\frac{\beta}{\alpha+\beta}\left(\vec{r}_{B}-\vec{r}_{A}\right)=\frac{\alpha \vec{r}_{A}+\beta \vec{r}_{B}}{\alpha+\beta}
$$

Sec 1.2

1. (i) That should be the parallelogram(the points inside are included) determined by these two vectors.
(ii) You could get the boundary lines first. Consider $\alpha=\beta, \alpha=-\beta, \alpha=1, \alpha=-1$. Then, you get four lines. The regions are the ones bounded by these four lines.
2. Writing $\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}, \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}$. Plug these two into the equation, and you would get:

$$
3 \overrightarrow{O A}+\overrightarrow{A B}+\overrightarrow{A C}=0
$$

This implies $\overrightarrow{A O}=\frac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})$
8. Suppose we extend $A O$ and it intersects $B C D$ at P. We would like to show that P is the center.
Write $\overrightarrow{O A}=\overrightarrow{O P}+\overrightarrow{P A}$. Do similar things for $\overrightarrow{O B}, \overrightarrow{O C}$ and $\overrightarrow{O D}$. You would then get:

$$
(4 \overrightarrow{O P}+\overrightarrow{P A})+(\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C})=0
$$

We can see that the first term is parallel to $P A$ while the second term is in plane $B C D$. The only possibility is that they are both 0 . You can then derive other conclusions.

