Some Hints for HW0,1

Math 321

Points:

1. Concept of vector (mag+direction). Properties of vector (space).
2. How to represent a vector and the direction vector (unit vector, unit is 1). Several angles and spherical coordiantes (using top view and side view)

1 Part of the hints for hw0

1. π (180 degree. We'll use radian a lot.) To show this, draw a line which goes through A and is parallel to $B C$.
2. $\pi / 2$. Connect O and B. Use the property that if two edges of a triagle have the same length then the opposite angles are equal.
3. $\angle A O C=2 \angle A B C$. Connect $B O$ and extend it so that $B O$ intersects $A C$ at D.
4. Denote the triagle as $\triangle A B C$. D midpoint of $B C$. E midpoint of $A B$. F midpoint of $A C$. $A D, C E$ intersect at G. Suppose $B G$ intersects $A C$ at F^{\prime}. Our goal is to show that F and F^{\prime} are the same.
Here is one option: Connect $D E$. Draw a line which goes through D and is parrallel to $C E$, intersecting $B F^{\prime}$ at H. Connect $H E$.
You can show that $D H$ and $G E$ have the same length and thus $D H E G$ is a parallelogram. Then $B F^{\prime}$ goes through the midpoint of $D E$. Then F^{\prime} must be the midpoint of the $A C$. (Later, we can show this using VECTORS)
5 should be solved using similar arguments. I talked about it in 301, 302. If you are still confused, just ask. (Later, we could show this using vectors.)
5. Also talked in 301, 302.

2 Hw 1

1. We need 2 numbers to specify the direction in $3 D$ space. We need 3 numbers to specify a general vector. However, the direction has magnitude 1, thus you can be convinced that we can only use 2 numbers to specify the direction. Please figure out which two numbers you need. (Hint:The angles)
2. $\hat{r}=\cos \varphi \hat{x}+\sin \varphi \hat{y}, \hat{\varphi}=-\sin \varphi \hat{x}+\cos \varphi \hat{y}, \hat{z}=\hat{z}$
3. Similar to 5 . But please figure this out and compare with that in book or online.
4. I'll do $A(1,1,1)$ as an example. Spherical: distance between O and A is $\sqrt{3}$. The angle between $O A$ and \hat{z} can be computed as $\theta=\cos ^{-1}(<1,1,1>\cdot<0,0,1>/ \sqrt{3})$. The angle φ can be determined using TOP VIEW. The angle is $\pi / 4$. The coordinate is $\left(\sqrt{3}, \cos ^{-1}(\sqrt{3} / 3), \pi / 4\right)$.
The cylindrical is easy which is $(\sqrt{2}, \pi / 4,1)$.
5. The hint is that you can change back to Cartesian coordinate and use the rules in Cartesian coordiante. Then switch back to spherical coordinate.
