This morning in Section 343, some people were still confused with the completeness of the list of solutions. Let me try to reform that statement here again.

Claim 1 For a n-th order linear equation, we need n independent basis solutions to the homogeneous part. The superposition of them forms a complete list of solutions to the homogeneous part.

Let's illustrate this with the following second order equation example:
Claim 2 Consider $y^{\prime \prime}+A y^{\prime}+B y=0$ where A, B are constants. If the characteristic equation $\lambda^{2}+A \lambda+B=0$ has two complex roots $\alpha \pm \beta i$ where $\beta \neq 0$, then we have two basis solutions $e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x$ and the list

$$
\left\{y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right) \mid C_{1}, C_{2} \in \mathbb{R}\right\}
$$

is the complete list of solutions.

- First of all, the list is a list of solutions. We obtain $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ from the characteristic polynomial and therefore they must be solutions. By superposition since the equation is linear and homogeneous, the list is a list of solutions.
- Secondly, we must argue that for any solution y^{*} to the equation, y^{*} belongs to the list. This argument relies on the existence and uniqueness theorem. We take this theorem for granted. The version of the theorem for a second order equation is: If the coefficients of the second order linear equation are continuous on the interval with left endpoint a, then it has a unique solution satisfying $y(a)=D$ and $y^{\prime}(a)=E$.
Now, let's take $a=0$ for simplicity. Look at y^{*}. It has a value $y^{*}(0)$ (this is the D in the theorem), and derivative, $\left(y^{*}\right)^{\prime}(0)$ (this is E in the theorem). Now, we claim that we can find \bar{y} from the list so that \bar{y} also has a value $y^{*}(0)$ at 0 and derivative $\left(y^{*}\right)^{\prime}(0)$ at 0 . To show this, we just list the equations

$$
\begin{gathered}
\bar{y}(0)=C_{1}+C_{2} * 0=y^{*}(0) \\
\bar{y}^{\prime}(0)=\alpha C_{1}+C_{2} \beta=\left(y^{*}\right)^{\prime}(0)
\end{gathered}
$$

We can find C_{1} and C_{2}. That means we have a function from the list that is a solution to the equation and has the same value and derivative as y^{*}. By the existence and uniqueness theorem, they must be equal, namely $y^{*}=\bar{y}$. Thus, y^{*} must belong to the list. The list is therefore complete.

