I'll just solve without sketching the graph.
$6.4 \# 5$
$y^{\prime \prime}+3 y^{\prime}+2 y=f(t), y(0)=0, y^{\prime}(0)=0 . f=u_{0}-u_{10}$.
Taking the Laplace Transform on both sides:
$\mathcal{L}\left(y^{\prime \prime}\right)+3 \mathcal{L}\left(y^{\prime}\right)+2 \mathcal{L}(y)=\left(s^{2} Y-s * 0-0\right)+3(s Y-0)+2 Y=\left(s^{2}+3 s+2\right) Y$
Right hand side is

$$
\mathcal{L}\left(u_{0}\right)-\mathcal{L}\left(u_{10}\right)=\frac{1}{s}-\frac{e^{-10 s}}{s}
$$

We hence have

$$
Y(s)=\frac{1-e^{-10 s}}{s\left(s^{2}+3 s+2\right)}=\frac{1}{s(s+1)(s+2)}-\frac{e^{-10 s}}{s(s+1)(s+2)}
$$

For the partial fraction

$$
\frac{1}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{(s+1)}+\frac{C}{s+2}
$$

Multiplying the denominator, and setting $s \rightarrow 0, s \rightarrow-1, s \rightarrow-2$, we have

$$
A=\frac{1}{2}, B=-1, C=\frac{1}{2}
$$

Noticing that $e^{-10 s}$ is the shifting in time with 10 , we have

$$
y(t)=\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}-u_{10}\left[\frac{1}{2}-e^{-(t-10)}+\frac{1}{2} e^{-2(t-10)}\right]
$$

$6.4 \# 10$
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), y(0)=0, y^{\prime}(0)=0 . g(t)=\sin (t)\left[u_{0}-u_{\pi}\right]$
Similarly, as above, the Laplace Transform of the left hand side is

$$
\left(s^{2}+s+\frac{5}{4}\right) Y(s)
$$

Be sure what you should include if the initial values are nonzero.
For the right hand side, we have

$$
\mathcal{L}(\sin (t))-\mathcal{L}\left(u_{\pi} \sin (t)\right)=\frac{1}{s^{2}+1}-\mathcal{L}\left(-u_{\pi} \sin (t-\pi)\right)=\frac{1}{s^{2}+1}+e^{-\pi s} \frac{1}{s^{2}+1}
$$

Hence, we have

$$
Y(s)=\frac{1}{\left(s^{2}+1\right)\left((s+1 / 2)^{2}+1\right)}\left[1+e^{-\pi s}\right]
$$

From here, we see that

$$
y(t)=h(t)+u_{\pi} h(t-\pi)
$$

where $h(t)$ is the inverse Laplace Transform of $\frac{1}{\left(s^{2}+1\right)\left((s+1 / 2)^{2}+1\right)}$
We do partial fraction again. The denominator are irreducible quadratic factors. You should have

$$
\frac{1}{\left(s^{2}+1\right)\left((s+1 / 2)^{2}+1\right)}=\frac{A_{1} s+B_{1}}{s^{2}+1}+\frac{A_{2} s+B_{2}}{(s+1 / 2)^{2}+1}
$$

. Comparing the powers, we have

$$
\begin{gathered}
A_{2}+A_{1}=0 \\
B_{1}+A_{1}+B_{2}=0 \\
\frac{5}{4} A_{1}+B_{1}+A_{2}=0 \\
\frac{5}{4} B_{1}+B_{2}=1
\end{gathered}
$$

We solve that (you can do Gauss-elimination)

$$
A_{1}=-16 / 17, B_{1}=4 / 17, A_{2}=16 / 17, B_{2}=12 / 17
$$

Hence, we have

$$
\mathcal{L}(h)=-\frac{16}{17} \frac{s}{s^{2}+1}+\frac{4}{17} \frac{1}{s^{2}+1}+\frac{16}{17} \frac{s+1 / 2}{(s+1 / 2)^{2}+1}+\frac{4}{17} \frac{1}{(s+1 / 2)^{2}+1}
$$

We find

$$
h(t)=-\frac{16}{17} \cos (t)+\frac{4}{17} \sin (t)+\frac{16}{17} e^{-t / 2} \cos (t)+\frac{4}{17} e^{-t / 2} \sin (t)
$$

$6.5 \# 5$
$y^{\prime \prime}+2 y^{\prime}+3 y=\sin (t)+\delta(t-3 \pi) y(0)=0, y^{\prime}(0)=0$
We take Transform on both sides. Left hand side is

$$
\left(s^{2}+2 s+3\right) Y(s)
$$

since the initial values are all zero.
Right hand side is

$$
\frac{1}{s^{2}+1}+e^{-3 \pi s}
$$

Hence, we have

$$
Y(s)=\frac{1}{\left(s^{2}+1\right)\left((s+1)^{2}+2\right)}+\frac{1}{(s+1)^{2}+2} e^{-3 \pi s}
$$

The second term is easy:

$$
\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{(s+1)^{2}+2} e^{-3 \pi s} \rightarrow \frac{1}{\sqrt{2}} u_{3 \pi} e^{-(t-3 \pi)} \sin (\sqrt{2}(t-3 \pi))
$$

For the first term, we have to do the partial fractions

$$
\begin{gathered}
\frac{1}{\left(s^{2}+1\right)\left((s+1)^{2}+2\right)}=\frac{A_{1} s+B_{1}}{s^{2}+1}+\frac{A_{2} s+B_{2}}{(s+1)^{2}+2} \\
A_{1}+A_{2}=0 \\
2 A_{1}+B_{1}+B_{2}=0 \\
3 A_{1}+2 B_{1}+A_{2}=0 \\
3 B_{1}+B_{2}=1
\end{gathered}
$$

We solve

$$
A_{2}=B_{1}=B_{2}=1 / 4, A_{1}=-1 / 4
$$

Hence, we have

$$
-\frac{1}{4} \frac{s}{s^{2}+1}+\frac{1}{4} \frac{1}{s^{2}+1}+\frac{1}{4} \frac{s+1}{(s+1)^{2}+2} \rightarrow-\frac{1}{4} \cos (t)+\frac{1}{4} \sin (t)+\frac{1}{4} e^{-t} \cos (\sqrt{2} t)
$$

The solution is therefore
$y(t)=-\frac{1}{4} \cos (t)+\frac{1}{4} \sin (t)+\frac{1}{4} e^{-t} \cos (\sqrt{2} t)+\frac{1}{\sqrt{2}} u_{3 \pi} e^{-(t-3 \pi)} \sin (\sqrt{2}(t-3 \pi))$
6.5\#9
$y^{\prime \prime}+y=u_{\pi / 2}+3 \delta(t-3 \pi / 2)-u_{2 \pi} . y(0)=y^{\prime}(0)=0$
The transform of the left hand side is

$$
\left(s^{2}+1\right) Y(s)
$$

since the initial conditions are zero.
The transform of the right hand side is

$$
e^{-s \pi / 2} \frac{1}{s}+3 e^{-s 3 \pi / 2}-e^{-s 2 \pi} \frac{1}{s}
$$

We hence have

$$
Y(s)=\frac{1}{s\left(s^{2}+1\right)}\left[e^{-\frac{\pi}{2} s}-e^{-2 \pi s}\right]+3 \frac{1}{s^{2}+1} e^{-\frac{3 \pi}{2} s}
$$

We have

$$
y(t)=u_{\pi / 2} h(t-\pi / 2)-u_{2 \pi} h(t-2 \pi)+3 u_{3 \pi / 2} \sin (t-3 \pi / 2)
$$

where $h$ satisfies

$$
\mathcal{L}(h)=\frac{1}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+1}
$$

We determine that

$$
A=1, B=-1, C=0
$$

Hence, we have

$$
h(t)=1-\cos (t)
$$

