Consider the system of equations, where $x_{1}=x_{1}(t), x_{2}=x_{2}(t)$ are two unknown functions:

$$
\left\{\begin{array}{c}
x_{1}^{\prime}-3 x_{1}+4 x_{2}=0 \\
x_{2}^{\prime}-x_{1}+x_{2}=0
\end{array}\right.
$$

Assume that the two functions satisfy the initial conditions $x_{1}(0)=1$, $x_{2}(0)=2$. Please find the function $x_{1}(t)$.

We define the vector

$$
x=\binom{x_{1}}{x_{2}} .
$$

and the system of equations can be written as $x^{\prime}=A x$ with

$$
A=\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right)
$$

Some people didn't change the signs for the coefficients when moving them to right. I didn't penalize too much in this quiz.

The characteristic equation

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(-1-\lambda)+4=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}=0
$$

Hence there is a repeated eigenvalue $\lambda=1$. We solve $(A-1 * I) \xi=0$:

$$
A-I=\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right) \Rightarrow \xi=\binom{2}{1}
$$

One solution is $x^{(1)}=e^{t} \xi$.This is not the x_{1} in the problem. We need another solution. We solve the generalized eigenvector problem $(A-I) \eta=\xi$.

$$
\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right) \eta=\binom{2}{1} \Rightarrow \eta=\binom{1}{0}+\mu \xi
$$

We can simply choose $\mu=0$ to get the generalized eigenvector and have another solution

$$
x^{(2)}=t e^{t}\binom{2}{1}+e^{t}\binom{1}{0} .
$$

The general solution is $x=C_{1} x^{(1)}+C_{2} x^{(2)}=\Psi(t) c$. At $t=0$, we have
$\binom{1}{2}=\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)\binom{C_{1}}{C_{2}} \Rightarrow c=\binom{C_{1}}{C_{2}}=\frac{1}{-1}\left(\begin{array}{cc}0 & -1 \\ -1 & 2\end{array}\right)\binom{1}{2}=\binom{2}{-3}$.
Hence, $x_{1}(t)=2 *\left(2 e^{t}\right)+(-3)\left(2 t e^{t}+e^{t}\right)=e^{t}-6 t e^{t}$.
(Bonus 1. 2 pts). Consider $x^{\prime}=A x$ where A is the identity matrix I_{2}. Is the eigenvalue repeated? Can you find a fundamental matrix for this system?

It's easy to see that the characteristic equation is $(\lambda-1)^{2}=0$ and hence $\lambda=1$ is repeated. We have $A-1 * I$ to be the zero matrix. Hence, any nonzero vector is an eigenvector. We thus can have two independent eigenvector $\xi^{(1)}=(1,0)^{T}$ and $\xi^{(2)}=(0,1)^{T}$. We thus have two independent solutions $x^{(1)}=e^{t} \xi^{(1)}$ and $x^{(2)}=e^{t} \xi^{(2)}$ which will make a fundamental matrix. Note that the fundamental matrix always exists. We need two solutions. In this case, there is no generalized eigenvector η that is not an eigenvector.
(Bonus 2. $2+4 \mathrm{pts}$). Suppose matrix A is 2×2. It has two eigenvalues 1,2 and the corresponding eigenvectors are $\xi^{(1)}=\binom{1}{2}$ and $\xi^{(2)}=\binom{-1}{1}$. (a). Write A into the form $A=P D P^{-1}$ where D is a diagonal matrix.(Hint: $P=\left[\xi^{(1)}, \xi^{(2)}\right]$). (b). A fundamental matrix for the system $x^{\prime}=A x$ is $\Psi(t)=\exp (A t)$. Use the form obtained to compute this fundamental matrix.

By the eigenvalue definition, we have $A \xi^{(1)}=\xi^{(1)}$ and $A \xi^{(2)}=2 \xi^{(2)}$. If P is defined like that, we have
$A P=\left[\xi^{(1)}, 2 \xi^{(2)}\right]=P\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) \Rightarrow A=P D P^{-1}=\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}1 / 3 & 1 / 3 \\ -2 / 3 & 1 / 3\end{array}\right)$
We thus have a fundamental matrix

$$
\Psi(t)=\exp \left(P D t P^{-1}\right)=P \exp (D t) P^{-1}=P\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) P^{-1}
$$

(Bonus 3. 4 pts). Consider the linear system $x^{\prime}=A x$ where $A=$ $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Find the general solution.

The eigenvalue is easy to see $\lambda=1$ which is repeated. We can have two independent eigenvectors $\xi^{(1)}=(1,0,0)^{T}$ and $\xi^{(2)}=(0,0,1)^{T}$. Hence, we can construct two solutions from them. However, we need three solutions. Another one must be from the generalized eigenvector η. In this case, only $\xi^{(1)}$ gives a generalized eigenvector

$$
(A-I) \eta=\xi^{(1)} \Rightarrow \eta=(0,1,0)
$$

Hence, $x=C_{1} e^{t} \xi^{(1)}+C_{2}\left(t e^{t} \xi^{(1)}+e^{t} \eta\right)+C_{3} e^{t} \xi^{(2)}$.

Consider the system of equations, where $x_{1}=x_{1}(t), x_{2}=x_{2}(t)$ are two unknown functions:

$$
\left\{\begin{array}{c}
x_{1}^{\prime}-x_{1}+x_{2}=0 \\
x_{2}^{\prime}-x_{1}-3 x_{2}=0
\end{array}\right.
$$

Assume that the two functions satisfy the initial conditions $x_{1}(0)=2, x_{2}(0)=$ 1. Please find the function $x_{2}(t)$.

We define the vector

$$
x=\binom{x_{1}}{x_{2}} .
$$

and the system of equations can be written as $x^{\prime}=A x$ with

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right)
$$

Some people didn't change the signs for the coefficients when moving them to right. I didn't penalize too much in this quiz.

The characteristic equation

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)(3-\lambda)+1=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0 .
$$

Hence there is a repeated eigenvalue $\lambda=2$. We solve $(A-2 I) \xi=0$:

$$
A-2 I=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right) \Rightarrow \xi=\binom{1}{-1}
$$

One solution is $x^{(1)}=e^{2 t} \xi$. This is not the x_{1} in the problem. We need another solution. We solve the generalized eigenvector problem $(A-2 I) \eta=\xi$.

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right) \eta=\binom{1}{-1} \Rightarrow \eta=\binom{0}{-1}+\mu \xi
$$

We can simply choose $\mu=0$ to get the generalized eigenvector and have another solution

$$
x^{(2)}=t e^{2 t}\binom{1}{-1}+e^{2 t}\binom{0}{-1} .
$$

The general solution is $x=C_{1} x^{(1)}+C_{2} x^{(2)}=\Psi(t) c$. At $t=0$, we have
$\binom{2}{1}=\left(\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right)\binom{C_{1}}{C_{2}} \Rightarrow c=\binom{C_{1}}{C_{2}}=\frac{1}{-1}\left(\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right)\binom{2}{1}=\binom{2}{-3}$.
Hence, $x_{2}(t)=2 *\left(-e^{2 t}\right)+(-3)\left(-t e^{2 t}-e^{2 t}\right)=e^{2 t}+3 t e^{2 t}$.
(Bonus 1. 2 pts). Consider $x^{\prime}=A x$ where A is the identity matrix I_{2}. Is the eigenvalue repeated? Can you find a fundamental matrix for this system?

It's easy to see that the characteristic equation is $(\lambda-1)^{2}=0$ and hence $\lambda=1$ is repeated. We have $A-1 * I$ to be the zero matrix. Hence, any nonzero vector is an eigenvector. We thus can have two independent eigenvector $\xi^{(1)}=(1,0)^{T}$ and $\xi^{(2)}=(0,1)^{T}$. We thus have two independent solutions $x^{(1)}=e^{t} \xi^{(1)}$ and $x^{(2)}=e^{t} \xi^{(2)}$ which will make a fundamental matrix. Note that the fundamental matrix always exists. We need two solutions. In this case, there is no generalized eigenvector η that is not an eigenvector.
(Bonus 2. $2+4 \mathrm{pts}$). Suppose matrix A is 2×2. It has two eigenvalues 1,2 and the corresponding eigenvectors are $\xi^{(1)}=\binom{1}{2}$ and $\xi^{(2)}=\binom{1}{-1}$. (a). Write A into the form $A=P D P^{-1}$ where D is a diagonal matrix.(Hint: $P=\left[\xi^{(1)}, \xi^{(2)}\right]$). (b). A fundamental matrix for the system $x^{\prime}=A x$ is $\Psi(t)=\exp (A t)$. Use the form obtained to compute this fundamental matrix.

By the eigenvalue definition, we have $A \xi^{(1)}=\xi^{(1)}$ and $A \xi^{(2)}=2 \xi^{(2)}$. If P is defined like that, we have
$A P=\left[\xi^{(1)}, 2 \xi^{(2)}\right]=P\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) \Rightarrow A=P D P^{-1}=\left(\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}1 / 3 & 1 / 3 \\ 2 / 3 & -1 / 3\end{array}\right)$
We thus have a fundamental matrix

$$
\Psi(t)=\exp \left(P D t P^{-1}\right)=P \exp (D t) P^{-1}=P\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) P^{-1}
$$

(Bonus 3. 4 pts). Consider the linear system $x^{\prime}=A x$ where $A=$ $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Find the general solution.

The eigenvalue is easy to see $\lambda=1$ which is repeated. We can have two independent eigenvectors $\xi^{(1)}=(1,0,0)^{T}$ and $\xi^{(2)}=(0,0,1)^{T}$. Hence, we can construct two solutions from them. However, we need three solutions. Another one must be from the generalized eigenvector η. In this case, only $\xi^{(1)}$ gives a generalized eigenvector

$$
(A-I) \eta=\xi^{(1)} \Rightarrow \eta=(0,1,0)
$$

Hence, $x=C_{1} e^{t} \xi^{(1)}+C_{2}\left(t e^{t} \xi^{(1)}+e^{t} \eta\right)+C_{3} e^{t} \xi^{(2)}$.

