Math 319 Quiz 3

Name:
Section:

1. $y=y(t)$. Consider the equation

$$
y^{\prime \prime}+3 y^{\prime}+4 y=u_{1}(t), \quad y(0)=1, y^{\prime}(0)=2
$$

where $u_{1}(t)$ is the step function with the jump at $t=1$. Find the Laplace Transform of y, denoted as $Y(s)$.

I was surprised to see that some people thought $u_{1}(t)=u_{1}(t-1)+u_{1}$. This is not right. Here $u_{1}(t)$ simply means the function u_{1} and the variable is t. If I want to mean multiplication, I should write $t u_{1}$ or $u_{1} \cdot t$.

We take the Transform on both sides.

$$
\begin{aligned}
\mathcal{L}(l h s)=\mathcal{L}\left(y^{\prime \prime}\right)+3 \mathcal{L}\left(y^{\prime}\right)+ & 4 \mathcal{L}(y)=\left[s^{2} Y-s y(0)-y^{\prime}(0)\right]+3[s Y-y(0)]+4 Y \\
& =\left(s^{2}+3 s+4\right) Y-s-5
\end{aligned}
$$

For the right hand side,

$$
\mathcal{L}(r h s)=\mathcal{L}\left(u_{1}\right)=e^{-s} \mathcal{L}(1)=\frac{e^{-s}}{s}
$$

Hence, $Y=\frac{e^{-s} / s+s+5}{s^{2}+3 s+4}$
2. Given the Laplace Transform, find the function $y(t)$:

$$
Y(s)=\frac{(s+1) e^{-s}}{s^{2}+4 s+5}
$$

We first of simplify the expression so that we have the sin and cos:

$$
Y(s)=\frac{(s+1) e^{-s}}{(s+2)^{2}+1}=\frac{(s+2) e^{-s}}{(s+2)^{2}+1}-\frac{e^{-s}}{(s+2)^{2}+1}
$$

Hence, we have

$$
y(t)=u_{1} e^{-2(t-1)} \cos (t-1)-u_{1} e^{-2(t-1)} \sin (t-1)
$$

Math 319 Quiz 3

Name:
Section:

1. $y=y(t)$. Consider the equation

$$
y^{\prime \prime}-y^{\prime}+2 y=u_{1}(t), \quad y(0)=2, y^{\prime}(0)=1
$$

where $u_{1}(t)$ is the step function with the jump at $t=1$. Find the Laplace Transform of y, denoted as $Y(s)$.

I was surprised to see that some people thought $u_{1}(t)=u_{1}(t-1)+u_{1}$. This is not right. Here $u_{1}(t)$ simply means the function u_{1} and the variable is t. If I want to mean multiplication, I should write $t u_{1}$ or $u_{1} \cdot t$.

We take the Transform on both sides.

$$
\begin{gathered}
\mathcal{L}(l h s)=\mathcal{L}\left(y^{\prime \prime}\right)-\mathcal{L}\left(y^{\prime}\right)+2 \mathcal{L}(y)=\left[s^{2} Y-s y(0)-y^{\prime}(0)\right]-[s Y-y(0)]+2 Y \\
=\left(s^{2}-s+2\right) Y-2 s+1
\end{gathered}
$$

For the right hand side,

$$
\mathcal{L}(r h s)=\mathcal{L}\left(u_{1}\right)=e^{-s} \mathcal{L}(1)=\frac{e^{-s}}{s}
$$

Hence, $Y=\frac{e^{-s} / s+2 s-1}{s^{2}-s+2}$
2. Given the Laplace Transform, find the function $y(t)$:

$$
Y(s)=\frac{(s-1) e^{-s}}{s^{2}-4 s+5}
$$

We first of simplify the expression so that we have the sin and cos:

$$
Y(s)=\frac{(s-1) e^{-s}}{(s-2)^{2}+1}=\frac{(s-2) e^{-s}}{(s-2)^{2}+1}+\frac{e^{-s}}{(s-2)^{2}+1}
$$

Hence, we have

$$
y(t)=u_{1} e^{2(t-1)} \cos (t-1)+u_{1} e^{2(t-1)} \sin (t-1)
$$

