## 1 Version 1

Consider the equation where $y=y(t)$ :

$$
L(y)=y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

Answer the questions below.

- (a). (3 pts) If $y_{1}(t)$ and $y_{2}(t)$ are two solutions, verify that $y(t)=$ $\sqrt{2} y_{1}(t)+\pi y_{2}(t)$ is also a solution.
Since $y_{1}$ is a solution, then if you plug $y_{1}$ into the equation, the left hand side equals the right hand side, which is zero. In other words, $L\left(y_{1}\right)=y_{1}^{\prime \prime}-5 y^{\prime}+6 y_{1}=0$. Similarly, $L\left(y_{2}\right)=0$.
To verify $y$, we simply plug it into the left hand side of the equation and have

$$
L(y)=L\left(\sqrt{2} y_{1}+\pi y_{2}\right)=\sqrt{2} L\left(y_{1}\right)+\pi L\left(y_{2}\right)=\sqrt{2} * 0+\pi * 0=0
$$

This means $y$ is also a solution.

- (b). ( $2+5 \mathrm{pts})$ If $y_{1}=e^{2 t}$ and $y_{2}=e^{3 t}$, check that the Wronskian at $t=0$ is nonzero; Given any solution $\phi(t)$ of the ODE, explain why it can be written as $\phi(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$. (Hint: Use the Existence and Uniqueness Theorem as we did in discussion. Comment: This then explains why $\left\{y_{1}, y_{2}\right\}$ is a fundamental set.)
The Wronskian is $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{2 t} 3 e^{3 t}-2 e^{2 t} e^{3 t}$, which is 1 at $t=0$.
Consider the initial conditions of $\phi: \phi(0), \phi^{\prime}(0)$. Now, since the Wronskian is nonzero, there exist a unique group of $\left\{C_{1}, C_{2}\right\}$ such that

$$
\begin{aligned}
& C_{1} y_{1}(0)+C_{2} y_{2}(0)=\phi(0) \\
& C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=\phi^{\prime}(0)
\end{aligned}
$$

For this particular choice of $C_{1}, C_{2}, C_{1} y_{1}(t)+C_{2} y_{2}(t)$ solves the same IVP as $\phi$ does. The Existence and Uniqueness theorem says that any IVP has one solution exactly. The only possibility is that $\phi$ and $C_{1} y_{1}+$ $C_{2} y_{2}$ must be the same. In other words, $\phi$ must be in the form as indicated.

## 2 Version 2

Consider the equation where $y=y(t)$ :

$$
L(y)=y^{\prime \prime}+4 y=0
$$

Answer the questions below.

- (a). (3 pts) If $y_{1}(t)$ and $y_{2}(t)$ are two solutions, verify that $y(t)=$ $\sqrt{3} y_{1}(t)+\pi y_{2}(t)$ is also a solution.
Since $y_{1}$ is a solution, then if you plug $y_{1}$ into the equation, the left hand side equals the right hand side, which is zero. In other words, $L\left(y_{1}\right)=y_{1}^{\prime \prime}+4 y_{1}=0$. Similarly, $L\left(y_{2}\right)=0$.
To verify $y$, we simply plug it into the left hand side of the equation and have

$$
L(y)=L\left(\sqrt{3} y_{1}+\pi y_{2}\right)=\sqrt{3} L\left(y_{1}\right)+\pi L\left(y_{2}\right)=\sqrt{3} * 0+\pi * 0=0
$$

This means $y$ is also a solution.

- (b). ( $2+5 \mathrm{pts})$ If $y_{1}=\cos (2 t)$ and $y_{2}=\sin (2 t)$, check that the Wronskian at $t=0$ is nonzero; Given any solution $\phi(t)$, explain why it can be written as $\phi(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$. (Hint: Use the Existence and Uniqueness Theorem as we did in discussion. Comment: This then explains why $\left\{y_{1}, y_{2}\right\}$ is a fundamental set.)
The Wronskian is $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\cos (2 t) * 2 \cos (2 t)-(-2 \sin (2 t)) \cos (2 t)=$ 2 , which is nonzero everywhere.
Consider the initial conditions of $\phi: \phi(0), \phi^{\prime}(0)$. Now, since the Wronskian is nonzero, there exist a unique group of $\left\{C_{1}, C_{2}\right\}$ such that

$$
\begin{aligned}
& C_{1} y_{1}(0)+C_{2} y_{2}(0)=\phi(0) \\
& C_{1} y_{1}^{\prime}(0)+C_{2} y_{2}^{\prime}(0)=\phi^{\prime}(0)
\end{aligned}
$$

For this particular choice of $C_{1}, C_{2}, C_{1} y_{1}(t)+C_{2} y_{2}(t)$ solves the same IVP as $\phi$ does. The Existence and Uniqueness theorem says that any IVP has one solution exactly. The only possibility is that $\phi$ and $C_{1} y_{1}+$ $C_{2} y_{2}$ must be the same. In other words, $\phi$ must be in the form as indicated.

