Version 1:

Consider the equation where $y=y(t)$:

$$
2 y^{2}-y^{\prime}+t y^{2}=0
$$

Answer the questions below.

- (a). (5 pts) Find ALL solutions to the equation.

Rearrange, $y^{\prime}=y^{2}(t+2)$. The equation is separable. When $y^{2}=0$, we see $y=0$. Hence there is a constant solution $y=0$. For $y \neq 0$, we have

$$
\int \frac{d y}{y^{2}}=\int(t+2) d t \Rightarrow-\frac{1}{y}=\frac{1}{2} t^{2}+2 t+C
$$

The solution could be $y=0$ or $y=-1 /\left(t^{2} / 2+2 t+C\right)$

- (b). (5 pts) Consider the solution curve that passes through $(0,1)$ (in other words $y(0)=1)$. Determine the largest interval where this solution curve is defined. Find out where it attains the minimum value.
For this solution curve, we determine $-1=0+0+C$. Hence

$$
y(t)=\frac{1}{1-2 t-t^{2} / 2}
$$

The solution is valid if and only if $1-2 t-t^{2} / 2 \neq 0$ or $t \neq-2 \pm \sqrt{6}$. Hence, the interval that contains 0 can be extended to $-2-\sqrt{6}$ on the left and to $-2+\sqrt{6}$ on the right. The largest interval is therefore $(-2-\sqrt{6},-2+\sqrt{6})$
The critical points can be found by setting $y^{\prime}(t)=0$. You can either do this by the equation or by the expression you get. If you do by the equation, you have $y^{\prime}=0 \Leftrightarrow y=0$, or $t=-2$. However, $y=0$ is impossible and the only choice is -2 . If you do by the expression you get, you would have $\left(-\frac{1}{(\ldots)^{2}}\right)(-t-2)=0$. Anyway, the only critical point is $t=-2$. Noticing that when t approaches the boundary of the interval, the solution goes to infinity and thus there must be a minimum point in the interior. $t=-2$ is the only candidate and it must be the minimum point. $y_{\min }=-\frac{1}{1-4-2}=\frac{1}{5}$

Version 2:

Consider the equation where $y=y(t)$:

$$
-(y+1)^{2}+y^{\prime}=2 t\left(y^{2}+2 y+1\right)
$$

Answer the questions below.

- (a). (5 pts) Find ALL solutions to the equation.

Rearrange, $y^{\prime}=(2 t+1)(y+1)^{2}$. The equation is separable. When $(y+1)^{2}=0$, we see $y=-1$. Hence there is a constant solution $y=-1$. For $y \neq-1$, we have

$$
\int \frac{d y}{(y+1)^{2}}=\int(2 t+1) d t \Rightarrow-\frac{1}{y+1}=t^{2}+t+C
$$

The solution could be $y=-1$ or $y=-1-1 /\left(t^{2}+t+C\right)$

- (b). (5 pts) Consider the solution curve that passes through (0,1)(in other words $y(0)=1$). Determine the largest interval where this solution curve is defined. Find out where it attains the minimum value.
For this solution curve, we determine $-1 / 2=0+0+C$. Hence

$$
y(t)=-1-\frac{1}{t^{2}+t-1 / 2}
$$

The solution is valid if and only if $t^{2}+t-1 / 2 \neq 0$ or $t \neq(-1 \pm \sqrt{3}) / 2$. Hence, the interval that contains 0 can be extended to $(-\sqrt{3}-1) / 2$ on the left and to $(\sqrt{3}-1) / 2$ on the right. The largest interval is therefore $((-\sqrt{3}-1) / 2,(\sqrt{3}-1) / 2)$
The critical points can be found by setting $y^{\prime}(t)=0$. You can either do this by the equation or by the expression you get. If you do by the equation, you have $y^{\prime}=0 \Leftrightarrow y=-1$, or $t=-1 / 2$. However, $y=-1$ is impossible and the only choice is $-1 / 2$. If you do by the expression you get, you would have $\frac{1}{(\ldots)^{2}}(2 t+1)=0$. Anyway, the only critical point is $t=-1 / 2$. Noticing that when t approaches the boundary of the interval, the solution goes to infinity and thus there must be a minimum point in the interior. $t=-1 / 2$ is the only candidate and it must be the minimum point. $y_{\text {min }}=y(-1 / 2)=1 / 3$

