\#1

$$
x^{\prime}=\left(\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right) x, \quad x(0)=\binom{3}{4}
$$

Denote the coefficient matrix by A. First find the fundamental matrix.
$\operatorname{det}\left(\begin{array}{cc}1-\lambda & -4 \\ 4 & -7-\lambda\end{array}\right)=(\lambda-1)(\lambda+7)+16=\lambda^{2}+6 \lambda+9=(\lambda+3)^{2}=0$

Hence, $\lambda=-3$ which is repeated.

$$
A-\lambda I=\left(\begin{array}{ll}
4 & -4 \\
4 & -4
\end{array}\right)
$$

We find one eigenvector and one solution

$$
\xi=\binom{1}{1} \Rightarrow x^{(1)}=e^{-3 t}\binom{1}{1}
$$

We need one more solution to construct the fundamental matrix, which is fulfilled by the generalized eigenvector.

$$
(A-\lambda I) \eta=\xi \Rightarrow \eta=a \xi+\binom{1 / 4}{0}
$$

Here, for any a, η is fine. We can simply choose $a=0$. Having η, we can construct another solution

$$
x^{(2)}=t 3^{-3 t} \xi+e^{-3 t} \eta=t 3^{-3 t}\binom{1}{1}+e^{-3 t}\binom{1 / 4}{0}
$$

It's easy to check that $W(0)=\operatorname{det}\left(x^{(1)}(0), x^{(2)}(0)\right) \neq 0$ and we therefore have a fundamental matrix

$$
\Psi(t)=\left(\begin{array}{cc}
e^{-3 t} & t e^{-3 t}+e^{-3 t} / 4 \\
e^{-3 t} & t e^{-3 t}
\end{array}\right)
$$

For the initial condition, we first compute the combination coefficient:

$$
c=\Psi^{-1}(0)\binom{3}{4}=\frac{1}{-1 / 4}\left(\begin{array}{cc}
0 & -1 / 4 \\
-1 & 1
\end{array}\right)\binom{3}{4}=\binom{4}{-4}
$$

We find

$$
x=\Psi(t) c=\binom{3 e^{-3 t}-4 t e^{-3 t}}{4(1-t) e^{-3 t}} .
$$

7.9.\#4

$$
x^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) x+\binom{e^{-2 t}}{-2 e^{t}}
$$

Step 1. Solve the homogeneous system. Again, we denote the coefficient by A and compute the characteristic equation

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}+\lambda-6=(\lambda+3)(\lambda-2)=0 .
$$

Two eigenvalues $\lambda=2, \lambda=-3$.
For $\lambda=2$, we compute

$$
A-\lambda I=\left(\begin{array}{cc}
-1 & 1 \\
4 & -4
\end{array}\right)
$$

One eigenvector and one solution are given by

$$
\xi^{(1)}=\binom{1}{1} \Rightarrow x^{(1)}=e^{2 t}\binom{1}{1} .
$$

Similarly, for $\lambda=-3$:

$$
\xi^{(2)}=\binom{1}{-4} \Rightarrow x^{(2)}=e^{-3 t}\binom{1}{-4} .
$$

We check that $W=\operatorname{det}\left(x^{(1)}, x^{(2)}\right) \neq 0$ at $t=0$ and hence a fundamental matrix is given by

$$
\Psi(t)=\left(\begin{array}{cc}
e^{2 t} & e^{-3 t} \\
e^{2 t} & -4 e^{-3 t}
\end{array}\right)
$$

Step 2. Find a particular solution. The formula is $x_{p}=\Psi(t) u(t)$ with $u(t)=\int \Psi^{-1}(t) g(t) d t$.

$$
\Psi^{-1}(t)=\frac{1}{-5 e^{-t}}\left(\begin{array}{cc}
-4 e^{-3 t} & -e^{-3 t} \\
-e^{2 t} & e^{2 t}
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
4 e^{-2 t} & e^{-2 t} \\
e^{3 t} & -e^{3 t}
\end{array}\right)
$$

We find

$$
u(t)=\int \frac{1}{5}\binom{4 e^{-4 t}-2 e^{-t}}{e^{t}+2 e^{4 t}} d t=\frac{1}{5}\binom{-e^{-4 t}+2 e^{-t}}{e^{t}+\frac{1}{2} e^{4 t}}
$$

$$
x=\Psi(t)(c+u(t))=\Psi(t) c+\binom{e^{t} / 2}{-e^{-2 t}}
$$

