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Denote the coefficient matrix by A. First find the fundamental matrix.

det< 13 —;f/\ ) =A=1D)A+N+16= 4+6A+9=A+3)?=0

Hence, A = —3 which is repeated.
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We find one eigenvector and one solution
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We need one more solution to construct the fundamental matrix, which is
fulfilled by the generalized eigenvector.

(A_)\I)ﬁ=€:>n:a§+< 164)

Here, for any a, 7 is fine. We can simply choose a = 0. Having 7, we can
construct another solution

22 = 43781g 4 o3y — 4381 ( 1 > gt < 164 > '

It’s easy to check that W (0) = det(z(1)(0),2?)(0)) # 0 and we therefore

have a fundamental matrix
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For the initial condition, we first compute the combination coefficient:

czw—1(0)<i>=_11/4<_01 _11/4><i>:<—44>
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Step 1. Solve the homogeneous system. Again, we denote the coefficient
by A and compute the characteristic equation
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det(A—=XI) =X+ X—=6=(\+3)(\—2)=0.

Two eigenvalues A = 2, \ = —3.
For A = 2, we compute
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One eigenvector and one solution are given by
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Similarly, for A = —3:

We check that W = det(z(), () # 0 at t = 0 and hence a fundamental
matrix is given by
o2t Bt
‘If(t) = ( 2t _ g3t > :

Step 2. Find a particular solution. The formula is x, = ¥ (¢)u(t) with

u(t) = [0 (B)g(t)dt.
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