(7.6 \#25)

We first of all notice that the units ' H ' for inductance, ' F ' for capacitance, Ω resistance, ' V ' for voltage, ' A ' for current, and 's' for time are consistent. Hence, we can ignore the units.
(a). Applying Kirchhoff's Voltage Law(KVL) to the $R_{1}-L-C$ loop, we have

$$
I R_{1}+L \frac{d I}{d t}+V=0 \Rightarrow I^{\prime}=-\frac{1}{2} I-\frac{1}{8} V
$$

Applying Kirchhoff's Current Law(KCL) to the $L-C$ node(junction), we have

$$
I-\frac{V}{R_{2}}-C \frac{d V}{d t}=0 \Rightarrow V^{\prime}=2 I-\frac{1}{2} V
$$

In matrix form, we have

$$
\frac{d}{d t}\binom{I}{V}=\left(\begin{array}{cc}
-1 / 2 & -1 / 8 \\
2 & -1 / 2
\end{array}\right)\binom{I}{V}
$$

(b). We denote

$$
x=\binom{I}{V}
$$

from here on. We denote the coefficient matrix by A. The system is linear, homogeneous, with constant coefficient. We compute the eigenvalues and eigenvectors.
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}-1 / 2-\lambda & -1 / 8 \\ 2 & -1 / 2-\lambda\end{array}\right)=\left(\lambda+\frac{1}{2}\right)^{2}+\frac{1}{4}=0 \Rightarrow \lambda+\frac{1}{2}= \pm \frac{i}{2}$
Hence $\lambda=-\frac{1}{2} \pm \frac{i}{2}$.

- $\lambda=-\frac{1}{2}+\frac{i}{2}$.

$$
A-\lambda I=\left(\begin{array}{cc}
-\frac{i}{2} & -1 / 8 \\
2 & -\frac{i}{2}
\end{array}\right) \Rightarrow \xi^{(1)}=\binom{1}{-4 i} .
$$

- $\lambda=-\frac{1}{2}-\frac{i}{2}$. Since A is real, the eigenvector must be conjugate of the eigenvectors we obtained in the first case. Hence

$$
\xi^{(2)}=\binom{1}{4 i} .
$$

We now have two complex solutions

$$
\exp \left(\left(-\frac{1}{2}+\frac{i}{2}\right) t\right)\binom{1}{-4 i}, \quad \exp \left(\left(-\frac{1}{2}-\frac{i}{2}\right) t\right)\binom{1}{4 i}
$$

Taking the real and imaginary parts, we have then two real solutions

$$
x^{(1)}=e^{-t / 2}\binom{\cos (t / 2)}{4 \sin (t / 2)}, \quad x^{(2)}=e^{-t / 2}\binom{\sin (t / 2)}{-4 \cos (t / 2)} .
$$

We check that they are independent by doing

$$
W(0)=\operatorname{det}\left(x^{(1)}(0), x^{(2)}(0)\right)=-4 \neq 0 .
$$

Hence, the general solution is

$$
x=C_{1} e^{-t / 2}\binom{\cos (t / 2)}{4 \sin (t / 2)}+C_{2} e^{-t / 2}\binom{\sin (t / 2)}{-4 \cos (t / 2)} .
$$

In matrix form

$$
\binom{I}{V}=\Psi(t) c=\left(\begin{array}{cc}
e^{-t / 2} \cos (t / 2) & e^{-t / 2} \sin (t / 2) \\
4 e^{-t / 2} \sin (t / 2) & -4 e^{-t / 2} \cos (t / 2)
\end{array}\right)\binom{C_{1}}{C_{2}} .
$$

(c). With the initial values, we have

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -4
\end{array}\right)\binom{C_{1}}{C_{2}}=\binom{2}{3}
$$

Hence, $C_{1}=2, C_{2}=-3 / 4$. Plugging these two back in, we have

$$
\begin{aligned}
& I(t)=2 e^{-t / 2} \cos (t / 2)-\frac{3}{4} e^{-t / 2} \sin (t / 2) \\
& V(t)=8 e^{-t / 2} \sin (t / 2)+3 e^{-t / 2} \cos (t / 2)
\end{aligned}
$$

(d). Since sin, cos terms are bounded, and $\exp (-t / 2) \rightarrow 0$ as $t \rightarrow \infty$, the limits must be zero for any initial condition. Physically, the system has no energy input and the energy in the circuit must be changed into heat by the resistors.

