\#1 (6.1-18)
$f(t)=t^{n} e^{a t}$. According to the requirement, we evaluate

$$
I_{n}=\int_{0^{-}}^{\infty} e^{-s t} e^{a t} t^{n} d t
$$

Assuming $s>a$, integrating by parts, we have

$$
I_{n}=\int_{0}^{\infty} e^{-(s-a) t} t^{n} d t=-\left.\frac{1}{s-a} e^{-(s-a) t} t^{n}\right|_{0} ^{\infty}+\frac{n}{s-a} \int_{0}^{\infty} e^{-(s-a) t} t^{n-1} d t
$$

If $n \geq 1$, the first term is zero since $\lim _{t \rightarrow \infty} e^{-(s-a) t} t^{n}=0$ and $0^{n}=0$. Hence

$$
I_{n}=\frac{n}{s-a} I_{n-1}, \quad n \geq 1
$$

This implies that

$$
I_{n}=\frac{n!}{(s-a)^{n}} I_{0}
$$

We evaluate that

$$
I_{0}=\int_{0^{-}}^{\infty} e^{-(s-a) t} d t=\frac{1}{s-a}
$$

Hence the answer is

$$
F(s)=I_{n}=\frac{n!}{(s-a)^{n+1}}
$$

If we are not required to use integration by parts, we can do it as following

$$
\begin{gather*}
\mathcal{L}(1)=\frac{1}{s} \quad \mathcal{L}(t)=-\frac{d}{d s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}, \quad \ldots, \mathcal{L}\left(t^{n}\right)=-\frac{d}{d s} \mathcal{L}\left(t^{n-1}\right)=\frac{n!}{s^{n+1}} \\
\mathcal{L}\left(e^{a t} t^{n}\right)=\left.\mathcal{L}\left(t^{n}\right)\right|_{s \rightarrow s-a}=\frac{n!}{(s-a)^{n+1}} \tag{6.1-31}
\end{gather*}
$$

(a).

$$
\mathcal{L}\left(t^{p}\right)=\int_{0^{-}}^{\infty} e^{-s t} t^{p} d t
$$

We do substitution $x=s t$ and have $d t=d x / s$.

$$
t^{p}=x^{p} / s^{p}
$$

Hence, we have

$$
\mathcal{L}\left(t^{p}\right)=\int_{0}^{\infty} e^{-x} \frac{x^{p}}{s^{p}}\left(\frac{1}{s} d x\right)=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x=\frac{\Gamma(p+1)}{s^{p+1}}
$$

(b). If $p=n$, then $\Gamma(n+1)=n$!. Hence, we have

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
$$

(c). Let $p=-1 / 2$, we have

$$
\mathcal{L}\left(t^{-1 / 2}\right)=\frac{\Gamma(1 / 2)}{s^{1 / 2}}
$$

Let's look at $\Gamma(1 / 2)$:

$$
\Gamma(1 / 2)=\int_{0}^{\infty} e^{-x} x^{-1 / 2} d x
$$

We do substitution $x=y^{2}$ and get

$$
\Gamma(1 / 2)=\int_{0}^{\infty} e^{-y^{2}} y^{-1}(2 y d y)=2 \int_{0}^{\infty} e^{-y^{2}} d y=\sqrt{\pi}
$$

Hence, we have

$$
\mathcal{L}\left(t^{-1 / 2}\right)=\frac{2}{s^{1 / 2}} \int_{0}^{\infty} e^{-y^{2}} d y=\frac{\sqrt{\pi}}{s^{1 / 2}}
$$

(d). Let $p=1 / 2$. We then have

$$
\mathcal{L}\left(t^{1 / 2}\right)=\frac{\Gamma(3 / 2)}{s^{3 / 2}}
$$

By the identity $\Gamma(p+1)=p \Gamma(p)$, we have

$$
\Gamma(3 / 2)=\frac{1}{2} \Gamma(1 / 2)=\frac{\sqrt{\pi}}{2}
$$

The answer then follows.
Another way is to use the property

$$
\mathcal{L}\left(t^{1 / 2}\right)=\mathcal{L}\left(t * t^{-1 / 2}\right)=-\frac{d}{d s} \mathcal{L}\left(t^{-1 / 2}\right)
$$

The same answer then follows.
\#3. Let's write the right hand side as $g(t)$. We take the Laplace Transform on both sides.

$$
L H S=\mathcal{L}\left(y^{\prime \prime}\right)+\mathcal{L}(y)=s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=\left(s^{2}+1\right) Y(s)
$$

For g, we rewrite it as

$$
g=t\left(u_{0}-u_{1}\right)=t u_{0}-t u_{1}=t u_{0}-(t-1) u_{1}-u_{1}
$$

Since $\mathcal{L}(1)=\frac{1}{s}, \mathcal{L}(t)=\frac{1}{s^{2}}$, we have

$$
R H S=\mathcal{L}(g)=\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}-\frac{1}{s} e^{-s}
$$

Hence

$$
Y(s)=\frac{1}{s^{2}+1}\left(\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}-\frac{1}{s} e^{-s}\right)=\frac{1-(1+s) e^{-s}}{s^{2}\left(s^{2}+1\right)}
$$

