
If we are trying to find the series solutions of linear equations (which are
good alternatives when we can’t find the closed analytical formulas. This is
usually the case when the coefficients are non-constant), we need to do the
following steps:

• Pick the center of the series and get the form of the series.

• Plug in and determine the relations for the coefficients.

• If possible, determine the formula(s) for the coefficients.

• Find out n solutions in the power series form where n is the order of
the equation. Verify that the radii of convergence are bigger than zero
and the Wronskian is nonzero.

For the radius of convergence, if the point is a regular point, you can simply
cite the theorem without applying the ratio test.

The function y = y(x):

y′′ + k2x2y = 0

The center is 0 and k is a constant.
(a). The form is

y =
∞∑
n=0

anx
n

Plugging in, we have

∞∑
n=0

ann(n− 1)xn−2 +

∞∑
n=0

k2anx
n+2 = 0

For the first, n = 0, n = 1 are zero and hence we can safely change the index
to be from n = 2.

∞∑
n=2

ann(n− 1)xn−2 +
∞∑
n=0

k2anx
n+2 = 0

Now, we need to make the powers agree. We can change both of them to
xn(some people used xn+2 and this is fine)

∞∑
n=0

an+2(n + 2)(n + 1)xn +
∞∑
n=2

k2an−2x
n = 0
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hence

a2 ∗ 2 + a3 ∗ 6 ∗ x +
∞∑
n=2

[an+2(n + 2)(n + 1) + k2an−2]x
n = 0

In other words, we have

a2 = a3 = 0

an+2 = − k2

(n + 2)(n + 1)
an−2, n = 2, 3, . . .

Or

a2 = a3 = 0

an+4 = − k2

(n + 4)(n + 3)
an, n = 0, 1, 2, . . .

(b+d): The relation is jumped by 4 and hence, we should discuss four
situations: n = 4m, 4m + 1, 4m + 2, 4m + 3. Since a2 = a3 = 0, it’s clear
that a4m+2 = a4m+3 = 0. Then, a0 determines a4, which in turn determines
a8 etc. a1 determines a5, and then a9 etc. Hence, the first solution is given
by 4m group while the second solution is given by 4m + 1 group.

We find

a4 = − k2

4 ∗ 3
a0

a8 = − k2

8 ∗ 7
a4 = (−k2)2 1

(8 ∗ 7) ∗ (4 ∗ 3)
a0

. . .

a4m = (−k2)m 1

(4m ∗ (4m− 1)) ∗ ((4m− 4) ∗ (4m− 5)) . . . (8 ∗ 7) ∗ (4 ∗ 3)
a0

Similarly, for the second group

a5 = − k2

5 ∗ 4
a1

a9 = − k2

9 ∗ 8
a5 = (−k2)2 1

(9 ∗ 8) ∗ (5 ∗ 4)
a1

. . .

a4m+1 = (−k2)m 1

((4m + 1) ∗ 4m) ∗ ((4m− 3) ∗ (4m− 4)) . . . (9 ∗ 8) ∗ (5 ∗ 4)
a1
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Hence,

y = a0y1 + a1y2

y1 = 1 +
∞∑

m=1

a4mx4m = 1 +
∞∑

m=1

(−k2x4)m

(4m ∗ (4m− 1)) ∗ ((4m− 4) ∗ (4m− 5)) . . . (4 ∗ 3)

y2 = x +
∞∑

m=1

(−k2)mx4m+1

((4m + 1) ∗ 4m) ∗ ((4m− 3) ∗ (4m− 4)) . . . (9 ∗ 8) ∗ (5 ∗ 4)

(c). Clearly, 0 is a regular point since the coefficients have Taylor series
about x0 = 0 and the radius of the convergence for the solution must be
bigger than zero(actually it’s ∞).

For the Wronskian, we compute y1(0) = 1, y2(0) = 0, y′2(0) = 1, y′1(0) =
0. Hence, we have

W (y1, y2)(0) = y1y
′
2 − y′1y2 = 1 ∗ 1− 0 ∗ 0 = 1 6= 0

{y1, y2} then form a fundamental set of solutions.
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