\#2.

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}
$$

For the first term, we define our new index to be $n=m-2$. Then, n starts from 0 . Then, the first can be written as $\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$.

For the second term, we multiply x in first to get the standard form of series:

$$
\sum_{k=1}^{\infty} k a_{k} x * x^{k-1}=\sum_{k=1}^{\infty} k a_{k} x^{k}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

Now, the two terms have the same power for x but the indices don't agree. To make them agree, we can add a term in the second series $0 * a_{0} * x^{0}$. Notice that this term is zero and hence we don't have to subtract to balance. Therefore:

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n}=\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}\right] x^{n}
$$

\#3

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Merging the left hand side, we have

$$
\sum_{n=0}^{\infty}\left[(n+1) a_{n+1}+2 a_{n}\right] x^{n}=0
$$

Hence

$$
a_{n+1}=-\frac{2}{n+1} a_{n}, \quad n=0,1,2,3, \ldots
$$

Using this relation, we find a formula for a_{n} :

$$
\begin{gathered}
a_{1}=-\frac{2}{1} a_{0} \\
a_{2}=-\frac{2}{2} a_{1} \\
a_{3}=-\frac{2}{3} a_{2} \\
\ldots \\
a_{n}=-\frac{2}{n} a_{n-1}
\end{gathered}
$$

Hence, $a_{n}=(-2)^{n} \frac{1}{n *(n-1) * \ldots * 2 * 1} a_{0}=\frac{(-2)^{n}}{n!} a_{0}$.
Hence,

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!} a_{0} x^{n}=a_{0} \sum_{n=0}^{\infty} \frac{(-2 x)^{n}}{n!}=a_{0} e^{-2 x}
$$

Actually, the equation is $y^{\prime}+2 y=0$. It's natural to get $y=C e^{-2 x}$

