1 Hw 4

\#1 (c).
The characteristic equation is $9 r^{2}-12 r+4=0$ or $(3 r-2)^{2}=0$. Hence, there is one repeated root $r=2 / 3$. A fundamental set is $\left\{e^{2 t / 3}, t e^{2 t / 3}\right\}$ and the general solution is

$$
y=C_{1} \exp \left(\frac{2 t}{3}\right)+C_{2} t \exp \left(\frac{2 t}{3}\right)
$$

Using the initial conditions

$$
\begin{gathered}
C_{1}+0=2 \\
\frac{2}{3} C_{1}+C_{2}=-2
\end{gathered}
$$

Hence $C_{1}=2, C_{2}=-\frac{10}{3}$. The solution to the IVP is

$$
y=2 e^{2 t / 3}-\frac{10}{3} t e^{2 t / 3}
$$

\#2. The main issue is that some people were using the characteristic equation for this problem. That is wrong! This is not a constant-coefficient equation and the characteristic equation doesn't work.

To check, you just plug in. To see if they make a fundamental set, you just compute the Wronskian. I would like to omit the checking process. For the Wronskian, $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=t\left(e^{t}+t e^{t}\right)-t e^{t}=t^{2} e^{t}$. This is nonzero for all $t>0$. Hence, they make a fundamental set.

2 The suggested problems

\#1. The homogeneous equation is that $y^{\prime \prime}+2 y^{\prime}+5 y=0$ and the characteristic equation is $r^{2}+2 r+5=0$. Hence, $r=-1 \pm 2 i$. $\left\{e^{-t} \cos (2 t), e^{-t} \sin (2 t)\right\}$.

The forcing term is just a solution to the homogeneous equation. The particular solution for this problem can be done by the undetermined coefficients by trying $y_{p}=C_{1} t e^{-t} \cos (2 t)+C_{2} t e^{-t} \sin (2 t)$. Note that we don't try $y_{p}=C_{1} t e^{-t} \cos (2 t)+C_{2} t e^{-t} \sin (2 t)+C_{3} e^{-t} \cos (2 t)+C_{4} e^{-t} \sin (2 t)$ because the latter two are solutions to the homogeneous equation.

Now let's plug in. Denote the differential operator on left by L.

$$
L\left(C_{1} t e^{-t} \cos (2 t)+C_{2} t e^{-t} \sin (2 t)\right)=C_{1} L\left(t e^{-t} \cos (2 t)\right)+C_{2} L\left(t e^{-t} \sin (2 t)\right)
$$

By Leibnitz rule

$$
\left(t e^{-t} \cos (2 t)\right)^{\prime \prime}=0+2 * 1 *\left(e^{-t} \cos (2 t)\right)^{\prime}+t\left(e^{-t} \cos (2 t)\right)^{\prime \prime}
$$

and the product rule

$$
\left(t e^{-t} \cos (2 t)\right)^{\prime}=e^{-t} \cos (2 t)+t\left(e^{-t} \cos (2 t)\right)^{\prime}
$$

and using the expression of L, we find that

$$
L\left(t e^{-t} \cos (2 t)\right)=2 * 1 *\left(e^{-t} \cos (2 t)\right)^{\prime}+2 * e^{-t} \cos (2 t)+t * L\left(e^{-t} \cos (2 t)\right)
$$

The last term is zero since $e^{-t} \cos (2 t)$ solves the homogeneous equation. Similarly

$$
L\left(t e^{-t} \sin (2 t)\right)=2\left(e^{-t} \sin (2 t)\right)^{\prime}+2 e^{-t} \sin (2 t)+t * L\left(e^{-t} \sin (2 t)\right)
$$

Hence, the left hand side is

$$
\begin{gathered}
C_{1}\left(2 * 1 *\left(e^{-t} \cos (2 t)\right)^{\prime}+2 * e^{-t} \cos (2 t)\right)+C_{2}\left(2\left(e^{-t} \sin (2 t)\right)^{\prime}+2 e^{-t} \sin (2 t)\right) \\
=-4 C_{1} e^{-t} \sin (2 t)+4 C_{2} e^{-t} \cos (2 t)
\end{gathered}
$$

We see then that $C_{1}=0, C_{2}=1$. Hence,

$$
Y=t e^{-t} \sin (2 t)
$$

The general solution is

$$
\begin{gathered}
y=A_{1} e^{-t} \cos (2 t)+A_{2} e^{-t} \sin (2 t)+t e^{-t} \sin (2 t) \\
y(0)=A_{1}=1
\end{gathered}
$$

Then,

$$
y^{\prime}(0)=-A_{1}+2 A_{2}+0=0, A_{2}=1 / 2
$$

\#2. Once again, the homogeneous solution can't be solved using the characteristic equation because it's not constant coefficient.
(b). The verification is easy. We just plug in. For example, for $y_{2}=$ $t^{2} \ln t$, by plugging in,

LHS $=t^{2}\left(t^{2} \ln t\right)^{\prime \prime}-3 t\left(t^{2} \ln t\right)^{\prime}+4\left(t^{2} \ln t\right)=t^{2}(2 \ln t+4-1)-3 t(2 t \ln t+t)+4 t^{2} \ln t=0=R H S$

Let's find y_{p} by the variation of parameters. One mistake people tend to make is to use $g=t^{2} \ln t$. This is not OK. We first should normalize the coefficient of $y^{\prime \prime}$ to 1 The equations

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=t^{2} \ln t / t^{2}
\end{gathered}
$$

we can compute $W\left(y_{1}, y_{2}\right)=t^{2}(2 t \ln t+t)-2 t t^{2} \ln t=t^{3}$. We solve that

$$
\left[\begin{array}{c}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
\ln t
\end{array}\right]=\frac{1}{W}\left[\begin{array}{cc}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right]\left[\begin{array}{c}
0 \\
\ln t
\end{array}\right]
$$

Hence, $u_{1}^{\prime}=\frac{-y_{2} \ln t}{W}=-(\ln t)^{2} / t$, which yields $u_{1}=-\int \frac{1}{t}(\ln t)^{2} d t=-\frac{1}{3}(\ln t)^{3}($ we only need one and hence the constant is ignored).

Similarly, $u_{2}^{\prime}=\frac{1}{t} \ln t$ and thus $u_{2}=\frac{1}{2}(\ln t)^{2}$.

$$
y_{p}=t^{2}\left(-\frac{1}{3}(\ln t)^{3}\right)+t^{2} \ln t\left(\frac{1}{2}(\ln t)^{2}\right)=\frac{1}{6} t^{2}(\ln t)^{3}
$$

