
#1.
(a). To verify they are the solutions for the IVP, we need two things:

They solve the differential equation on a certain interval; They satisfy the
initial conditions.

For y1(t) = 1 − t. The initial condition is obvious, because y1(2) =
1− 2 = −1. For the differential equation, we just plug in

f(t, y1) =
−t +

√
t2 + 4(1− t)

2
=
−t + |t− 2|

2
=

{
−1 t ≥ 2

1− t t < 2

We also verify that y′1(t) = −1. Hence, y1 solves the ODE on t ≥ 2.

For y2(t), the initial condition is y2(2) = −22

4 = −1. We also check that

f(t, y2) =
−t +

√
t2 + 4(−t2/4)

2
= − t

2

and y′2(t) = −t/2. Hence, y2 also solves the IVP.
Some people were only checking the ODE at t = 2. This is not good.

We should check the equation for any t on a certain interval.
The interval of definition is the one that includes t0 and on

which a function y is defined and solves the equation. The bound-
ary is where the function begins to behave poorly (i.e. either y or
y′ blows up) or the ODE begins to fail.

In our case, we see that y and y′ are defined everywhere. However, for
y1, the ODE fails to be true on t < 2. Hence the interval of definition for y1
is [2,∞) while the interval for y2 is the whole R

(b). There’s no contradiction. One requirement for the the theorem is
that both f and fy are continuous. However, in our example, fy = 1√

t2+4y

is not continuous at (t, y) = (2,−1)

(c). To verify it’s a solution, it’s easy. We just plug in and see f(t, y) =
−t+|t+2c|

2 and y′ = c. Hence, if t ≥ −2c, f(t, y) = c and the equation holds.
That means y is a solution for t ≥ −2c. When, c = −1, it’s just y1 and it
satisfies the initial condition.

We see that y = ct+c2 is linear function while y2 is a quadratic function.
These two can’t be equal since −t2/4− ct− c2 is not always zero. Hence, y2
can’t be included into this family. This means generally there is no general
solution (or a formula that contains all solutions) for a nonlinear equation.
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