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(a). To verify they are the solutions for the IVP, we need two things:
They solve the differential equation on a certain interval; They satisfy the
initial conditions.

For y1(t) = 1 — t. The initial condition is obvious, because y;(2) =
1 — 2 = —1. For the differential equation, we just plug in
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We also verify that ¢} (t) = —1. Hence, y; solves the ODE on ¢ > 2.
For ya(t), the initial condition is y2(2) = —% = —1. We also check that
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and y5(t) = —t/2. Hence, ya also solves the IVP.

Some people were only checking the ODE at t = 2. This is not good.
We should check the equation for any ¢ on a certain interval.

The interval of definition is the one that includes ¢ty and on
which a function y is defined and solves the equation. The bound-
ary is where the function begins to behave poorly (i.e. either y or
y' blows up) or the ODE begins to fail.

In our case, we see that y and vy’ are defined everywhere. However, for
y1, the ODE fails to be true on t < 2. Hence the interval of definition for y;
is [2,00) while the interval for y, is the whole R

(b). There’s no contradiction. One requirement for the the theorem is

that both f and f, are continuous. However, in our example, f, = \/ﬁ
y

is not continuous at (t,y) = (2, —1)

(c). To verify it’s a solution, it’s easy. We just plug in and see f(t,y) =
M and y' = ¢. Hence, if t > —2¢, f(t,y) = ¢ and the equation holds.
That means y is a solution for ¢ > —2¢. When, ¢ = —1, it’s just y; and it
satisfies the initial condition.

We see that y = ct+c? is linear function while ys is a quadratic function.
These two can’t be equal since —t2/4 — ¢t — ¢? is not always zero. Hence, yo
can’t be included into this family. This means generally there is no general
solution (or a formula that contains all solutions) for a nonlinear equation.



