\#1.
(a). To verify they are the solutions for the IVP, we need two things: They solve the differential equation on a certain interval; They satisfy the initial conditions.

For $y_{1}(t)=1-t$. The initial condition is obvious, because $y_{1}(2)=$ $1-2=-1$. For the differential equation, we just plug in

$$
f\left(t, y_{1}\right)=\frac{-t+\sqrt{t^{2}+4(1-t)}}{2}=\frac{-t+|t-2|}{2}=\left\{\begin{array}{c}
-1 \quad t \geq 2 \\
1-t \quad t<2
\end{array}\right.
$$

We also verify that $y_{1}^{\prime}(t)=-1$. Hence, y_{1} solves the ODE on $t \geq 2$.
For $y_{2}(t)$, the initial condition is $y_{2}(2)=-\frac{2^{2}}{4}=-1$. We also check that

$$
f\left(t, y_{2}\right)=\frac{-t+\sqrt{t^{2}+4\left(-t^{2} / 4\right)}}{2}=-\frac{t}{2}
$$

and $y_{2}^{\prime}(t)=-t / 2$. Hence, y_{2} also solves the IVP.
Some people were only checking the ODE at $t=2$. This is not good. We should check the equation for any t on a certain interval.

The interval of definition is the one that includes t_{0} and on which a function y is defined and solves the equation. The boundary is where the function begins to behave poorly (i.e. either y or y^{\prime} blows up) or the ODE begins to fail.

In our case, we see that y and y^{\prime} are defined everywhere. However, for y_{1}, the ODE fails to be true on $t<2$. Hence the interval of definition for y_{1} is $[2, \infty)$ while the interval for y_{2} is the whole \mathbb{R}
(b). There's no contradiction. One requirement for the the theorem is that both f and f_{y} are continuous. However, in our example, $f_{y}=\frac{1}{\sqrt{t^{2}+4 y}}$ is not continuous at $(t, y)=(2,-1)$
(c). To verify it's a solution, it's easy. We just plug in and see $f(t, y)=$ $\frac{-t+|t+2 c|}{2}$ and $y^{\prime}=c$. Hence, if $t \geq-2 c, f(t, y)=c$ and the equation holds. That means y is a solution for $t \geq-2 c$. When, $c=-1$, it's just y_{1} and it satisfies the initial condition.

We see that $y=c t+c^{2}$ is linear function while y_{2} is a quadratic function. These two can't be equal since $-t^{2} / 4-c t-c^{2}$ is not always zero. Hence, y_{2} can't be included into this family. This means generally there is no general solution (or a formula that contains all solutions) for a nonlinear equation.

