\#1.
The equation is

$$
(2 t-y)+(2 y-t) y^{\prime}=0
$$

We check that $M_{y}=-1=N_{t}$. Hence, it's exact.

$$
(2 t-y) d t+(2 y-t) d y=0
$$

Undoing the differentiation, we have

$$
d\left(t^{2}\right)-d(t y)+d\left(y^{2}\right)=0 \Rightarrow d\left(t^{2}-y t+y^{2}\right)=0
$$

Hence, we have

$$
t^{2}-y t+y^{2}=C
$$

Using the initial value, we have $C=13$.
To determine the interval, you can either solve it exactly as

$$
y=\frac{t \pm \sqrt{t^{2}-4\left(t^{2}-13\right)}}{2}
$$

Clearly, we pick the ' + ' branch and hence

$$
y=\frac{t+\sqrt{52-3 t^{2}}}{2}
$$

from which we know $52-3 t^{2}>0$ or $t^{2}<52 / 3$ and the interval is $(-\sqrt{52 / 3}, \sqrt{52 / 3})$.
Another way is to notice $y^{\prime}=\infty$ if $2 y-t=0$ or $y=t / 2$. Plugging this in, we have

$$
t^{2}-t * t / 2+(t / 2)^{2}=13
$$

Again $t^{2}=52 / 3$. Anyway, the answer is

$$
t^{2}-y t+y^{2}-13=0, t \in(-\sqrt{52 / 3}, \sqrt{52 / 3})
$$

\#2.
I have gone over a very similar example in discussions actually
$y+\left(2 t-3 y e^{y}\right) y^{\prime}=0$ This is nonlinear, not separable and not exact. However, let $M=y, N=2 t-3 y e^{y}$, we see that $\left(M_{y}-N_{t}\right) /(-M)$ depends on y only and hence there's a factor that depends on y only. Then,

$$
(\mu M)_{y}=(\mu N)_{t}
$$

implies

$$
\mu_{y}=\frac{1}{y} \mu
$$

and thus $\mu=y$.
Hence, $y^{2} d t+\left(2 t y-3 y^{2} e^{y}\right) d y=0$. Undoing the differentiation, we have

$$
d\left(t y^{2}\right)+\left(-3 y^{2} e^{y}\right) d y=0
$$

For the second term, we observe that

$$
\int e^{y} y^{2} d y=y^{2} e^{y}-2 y e^{y}+2 e^{y}+C
$$

Hence, the equation can be reduced to

$$
d\left(t y^{2}\right)+d\left(-3 y^{2} e^{y}+6 y e^{y}-6 e^{y}\right)=0
$$

or

$$
t y^{2}-3 y^{2} e^{y}+6 y e^{y}-6 e^{y}=C
$$

