
9.6#3
The Lyapunov function can be constructed to be positive definite. Hence,

we need a > 0, c > 0. Then, along a trajectory x(t), y(t), we have (All x, y
should be understood as x(t), y(t)):

d

dt
V = Vxẋ+ Vyẏ = 2ax(−x3 + 2y3) + 2cy(−2xy2) = −2ax4 + 4(a− c)xy3

The first term is nonpositive but the second term is bad since the sign can’t
be determined. Hence, we can conveniently choose a = c = 1 to kill it.

V = x2 + y2 is clearly positive definite and d
dtV = −2x4 ≤ 0 which is

negative semidefinite. Hence, the critical point (0, 0) is at least stable.
9.6.#9
(a). If we do substitution x = u, y = du/dt, we have{ dx

dt = y
dy
dt = −y − g(x)

Clearly, (0, 0) is a critical point.
If we use the Lyapunov function

V =
1

2
y2 +

∫ x

0
g(s)ds,

we first of all should show that V is positive definite in a neighborhood of
the critical point (0, 0) and show that d

dtV (x(t), (t)) is negative semidefinite.
The condition V (0, 0) = 0 is clear. For a point (x, y) such that 0 <

|x| < k, we have
∫ x
0 g(s)ds > 0. This is because when x > 0, g(s) > 0 on

(0, x]; when x < 0,
∫ x
0 g(s)ds = −

∫ −x
0 g(−s)ds > 0 as

∫ −x
0 g(−s)ds < 0 since

g(−s) < 0. Hence, V (x, y) = 1
2y

2 +
∫ x
0 g(s)ds > 0 for any (x, y) 6= (0, 0) and

|x| < k. V is positive definite in (−k, k)× (−k, k).
Now, along any trajectory (x(t), y(t)), we compute

d

dt
V (x(t), y(t)) = Vxẋ+ Vyẏ = g(x) ∗ y + y ∗ (−y − g(x)) = −y2 ≤ 0

This then verifies that the critical point (0, 0) is stable.
(b). In this problem, we show the asymptotical stability for the special

case g(x) = sin(x) as the problem required. (For general g, it involves some
Taylor expansion estimates.)

As the problem suggests, we use the following Lyapunov function

V (x, y) =
1

2
y2 +

1

2
y sin(x) +

∫ x

0
sin(s)ds =

1

2
y2 +

1

2
y sinx+ 1− cos(x)
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We now show that this is positive definite. Using the expansion sinx =
x− αx3/3! and cos(x) = 1− x2

2 + γ x4

4! , we have

V =
1

2
y2 +

1

2
xy +

x2

2
− α x3y

2 ∗ 3!
− γ x

4

4!

We note that |α| < 1, |γ| < 1 and x3y = o(x2 + y2), x4 = o(x2 + y2). For the
latter two, we have

| x3y

x2 + y2
| ≤ |xy| → 0, | x4

x2 + y2
| ≤ |x2| → 0.

Hence, for any ε > 0, we can find δ > 0 such that when r =
√
x2 + y2 < δ,

we have

−|α x3y

2 ∗ 3!
+ γ

x4

4!
| ≥ −ε(x2 + y2)

Then,

V ≥ 1

2
y2 +

1

2
xy +

1

2
x2 − ε(x2 + y2) = (

1

2
− ε)y2 +

1

2
xy + (

1

2
− ε)x2

we see that as long as ε < 1/4, 4AC −B2 > 0 and the Lyapunov function is
positive definite.

For the derivative:

d

dt
V = Vxẋ+ Vyẏ = (

y

2
cosx+ sin(x))y + (y +

sinx

2
)(−y − sin(x))

= (
1

2
cosx− 1)y2 − 1

2
y sinx− 1

2
sin2 x = (

1

2
cosx− 1)y2 − 1

2
y sinx− 1

2
sin2 x

Again, we use the expansion:

V̇ = −1

2
y2 − βx2y2

4
− 1

2
xy + α

1

2 ∗ 3!
x3y − 1

2
x2 +

2αx4

3!
− α2x6

(3!)2

Similarly, x2y2, x3y, x4, x6 are all o(x2 + y2)(that means they decay to zero
faster than x2 + y2). Then, for any ε > 0, we can find δ > 0 such that if
r < δ, we have

V̇ ≤ −1

2
y2 − 1

2
xy − 1

2
x2 + ε(x2 + y2)

If we choose 0 < ε < 1/4, then, V̇ is negative definite. The critical point
(0, 0) is asymptotically stable.

2



Another simpler Lyapunov function for this problem is

V (x, y) =
1

2
y2 +

1

2
xy +

∫ x

0
sin(s)ds =

1

2
y2 +

1

2
xy + 1− cos(x)

=
1

2
(y + x/2)2 + 1− cosx− x2/8

We need to show that this is positive definite. We need the expansion of
cos(x):

cos(x) = 1− x2

2!
+ γ

x4

4!

Hence, we have

1− cosx− x2

8
=
x2

2
− x2

8
− γ x

4

4!
=

3

8
x2 − γ x

4

4!

Hence, we can find numbers δ > 0 and µ ∈ (0, 3/8) such that when |x| < δ,

3

8
x2 − γ x

4

4!
≥ µx2

since x4 decays to zero much faster than x2 as x→ 0.
Then V is positive definite in |x| < δ, |y| < δ since 1

2(y + x/2)2 + µx2 > 0
for (x, y) 6= (0, 0).

The derivative can be computed:

d

dt
V = Vxẋ+ Vyẏ = (

y

2
+ sin(x))y + (y +

x

2
)(−y − sin(x))

= −y
2

2
− xy

2
− x sin(x)

2
= −1

2
(y + x/2)2 − x sinx

2
+
x2

8

This time, we use the expansion of sinx: sinx = x− αx3/3!. We find that

−x sinx

2
+
x2

8
= −3

8
x2 + α

x4

2 ∗ 3!
.

Similarly, we can find δ > 0 and µ ∈ (0, 3/8) such that

−3

8
x2 + α

x4

2 ∗ 3!
≤ −µx2

since x4 decays to zero much faster than x2 as x→ 0.
Then, d

dtV is negative definite. The critical point (0, 0) is asymptotically
stable.
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#10. (a). We first show Sec. 9.1, 21:
Let’s denote p = a11 + a22 for the trace and q = a11a22− a12a21 for the

determinant. Then, the eigenvalues satisfy

λ2 − pλ+ q = 0

(c). In the case p > 0, λ1 + λ2 = p > 0, then one of them must have a
positive real part. Hence, unstable. In the case q < 0, λ1λ2 = q < 0, then
since the matrix is real, either both λ1 and λ2 are real or they are conjugate
to each other. The latter can’t happen since the product of them is negative.
Hence, both of them are real. The negative product implies that one of them
is positive and hence the critical point is unstable.

(b). In the case q > 0 and p = 0, the eigenvalues are pure imaginary.
The critical point of the linear system is stable but not asymptotically stable.

(a). In the case, q > 0, p < 0, we have

λ =
p±

√
p2 − 4q

2
.

Since q > 0, |
√
p2 − 4q| < −p and the real parts of the eigenvalues must be

negative no matter if p2−4q is positive or negative. Then, the critical point
is asymptotically stable.

Note, you can’t say ’Because asymptotically stable, by 9.1, 21(a), q >
0, p < 0’ since we haven’t shown the reverse direction.

We show that the implications in Sec. 9.1, 21 (a) can be reversed. If we
have the asymptotically stability but q > 0, p < 0 is not true, then one of
the three cases ’q > 0, p = 0’, ’q < 0’,’p > 0’ must happen. However, as we
have shown in 9.1, 21(b) or 21(c), any of them will not give the asymptotical
stability. Hence, q > 0, p < 0 must be true.

(b). As indicated, we first choose A,B,C to make V̇ = −x2 − y2 and
then show that V is positive definite in (c).

V̇ = Vxẋ+ Vyẏ = (2Ax+By)(a11x+ a12y) + (Bx+ 2Cy)(a21x+ a22y)

To satisfy the requirements, we have

2Aa11 +Ba21 = −1

2Aa12 +Ba11 +Ba22 + 2Ca21 = 0

Ba12 + 2Ca22 = −1
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We have the linear system 2a11 a21 0
2a12 a11 + a22 2a21

0 a12 2a22

 A
B
C

 =

 −1
0
−1


We denote the coefficient matrix by M . To solve the unknowns numerically,
usually we use Gauss elimination. However, here, we prefer to use Cramer’s
rule to derive the formulas. By Cramer’s rule, we have

A =
1

det(M)
det

 −1 a21 0
0 a11 + a22 2a21
−1 a12 2a22

 =
−2(a11a22 + a222 − a12a21 + a221)

4∆

B =
1

detM
det

 2a11 −1 0
2a12 0 2a21

0 −1 2a22

 =
4(a12a22 + a11a21)

4∆

Similarly,

C =
1

det(M)
det

 2a11 a21 −1
2a12 a11 + a22 0

0 a12 −1

 =
−2(a211 + a212 + a11a22 − a12a21)

4∆

(c). Clearly, ∆ = pq < 0. We see that q = a11a22 − a12a21 > 0 and
hence A = −(q + a221 + a222)/(2∆) > 0.

Clearly,

4AC−B2 =
(a11a22 + a222 − a12a21 + a221)(a

2
11 + a212 + a11a22 − a12a21)− (a12a22 + a11a21)

2

∆2

The numerator can be computed as

(q + a221 + a222)(q + a211 + a212)− (a12a22 + a11a21)
2

= q2 + (a211 + a212 + a221 + a222)q + (a221a
2
12 + a222a

2
11 − 2a12a22a11a21)

= 2q2 + (a211 + a212 + a221 + a222)q

Since q > 0, 4AC −B2 > 0, the Lyapunov function is positive definite.
#11. (a). Using the same Lyapunov function

V̇ = Vxẋ+ Vyẏ = (2Ax+By)(a11x+ a12y + F1) + (Bx+ 2Cy)(a21x+ a22y +G1)

= −x2 − y2 + (2Ax+By)F1 + (Bx+ 2Cy)G1.
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(b). Since F1 = o(r), G1 = o(r)(in other words, F1/r → 0, G1/r → 0 as
r → 0), given any ε > 0, we can choose δ > 0 such that

|F1| < εr, |G1| < εr, if 0 < r < δ

Then,

|(2Ax+By)F1 + (Bx+ 2Cy)G1| ≤ |2A||x|εr + |B||y|εr + |B||x|εr + |2C||y|εr
≤ 2(|A|+ |B|+ |C|)εr2

If we choose ε = 1/(4(|A|+ |B|+ |C|)), then this term is ≤ r2/2. Hence we
have

V̇ ≤ −x2 − y2 +
r2

2
= −x

2 + y2

2

which shows that the derivative is negative definite.
Hence, the nonlinear system is also asymptotically stable at (0, 0).
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