\#4.
The equation is separable. Before dividing $y(4-y)$, we check if there are constant solutions to make it zero.

$$
y=0, y=4
$$

Now, assume $y \neq 0,4$.

$$
\begin{gathered}
\int \frac{1}{y(4-y)} d y=\int \frac{t}{t+1} d y \\
L H S=\frac{1}{4} \int\left(\frac{1}{y}+\frac{1}{4-y}\right) d y=\frac{1}{4} \ln \left|\frac{y}{4-y}\right|
\end{gathered}
$$

where the constant is absorbed to RHS.

$$
R H S=\int\left(1-\frac{1}{t+1}\right) d t=t-\ln |1+t|+C_{1}
$$

Hence,

$$
\frac{y}{4-y}=C(1+t)^{-4} e^{4 t} \Rightarrow y=\frac{4 C(1+t)^{-4} e^{4 t}}{1+C(1+t)^{-4} e^{4 t}}
$$

(a). With $y(0)=y_{0}$, we see that if $y_{0}=4, y=4$. If $y_{0}>0, y_{0} \neq 4$, $C=\frac{y_{0}}{4-y_{0}}$. Hence the solution is

$$
y=\frac{4 y_{0} e^{4 t}}{\left(4-y_{0}\right)(1+t)^{4}+y_{0} e^{4 t}}
$$

Interestingly, even though $y=4$ can't be combined into the expression that contains C, this reduced solution is valid for all $y_{0}>0$ including $y_{0}=4$.

For $y_{0}>0$, taking the limit $t \rightarrow \infty$, since $e^{-4 t}(1+t)^{4} \rightarrow 0$, the limit is $\frac{4 y_{0}}{y_{0}}=4$.

Some people were analyzing the behavior by the equation directly. That's great but the argument was not convincing. Let me provide one here:

It's clear that $y=0, y=4$ are two solutions. Also, if $y_{0}>4, y>4$ always because otherwise $y\left(t_{0}\right)=4$ for some $t_{0}>0$. Then, around t_{0}, there are two solutions of the equation that satisfies $y\left(t_{0}\right)=4$ which contradicts with the existence and uniqueness theorem. Similarly if $0<y_{0}<4,0<$ $y<4$ is true always. If $y_{0}=4, y=4$. This means the constant solutions will control the non constant solutions.

Now, if $y_{0}>4$ and hence $y>4$, we see that $y^{\prime}(t)<0$ and thus y decreases. Because it's bounded below by $4, \lim _{t \rightarrow \infty} y=Y$ exists. Also,
$y^{\prime}(t) \rightarrow 0, t \rightarrow \infty$ if $y \rightarrow Y$ because the function is differentiable for as many times as you want. (To be rigorous, $\int_{T}^{T+\Delta} y^{\prime}(t) d t=y(T+\Delta)-y(T) \rightarrow$ $Y-Y=0$. However, $y^{\prime}<0,-\int_{T}^{T+\Delta}\left|y^{\prime}\right| d t \rightarrow 0$. However, by the equation, $\left|y^{\prime}\right| \rightarrow$ const. Then, $\left.\left|y^{\prime}\right| \rightarrow 0\right)$. You take the limit on both sides of the equation and have $0=Y(4-Y)$. Since $y>4$, the only possibility is $Y=4$.

If $0<y_{0}<4$, the solution increases but will be always below 4 . Similarly the limit exists. Also, $y^{\prime} \rightarrow 0$ if the limit exists. Then, the same trick applies. The limit is 4 again.
(b). When $y_{0}=2$, the solution is $y(t)=\frac{4 e^{4 t}}{(1+t)^{4}+e^{4 t}}$. Hence, if $y(T)=$ 3.99,

$$
e^{4 T}=399(1+T)^{4}
$$

Here we seek the time that is on the right of $t=0$ and it is $T \approx 2.8437$ (the $-0.91,-1.07$ are discarded because they are not the 'first time' as we increase time from $t=0$)
(c). We compute $y(2)=\frac{4 y_{0} e^{8}}{3^{4}\left(4-y_{0}\right)+y_{0} e^{8}} \approx \frac{4 y_{0}}{0.0272\left(4-y_{0}\right)+y_{0}}=\frac{4 y_{0}}{0.9728 y_{0}+0.1087}$

When this is $4.01, y_{0} \approx 4.40$. When this is $3.99, y_{0} \approx 3.66$. Hence $3.66<y_{0}<4.40$

