#4.

The equation is separable. Before dividing y(4-y), we check if there are constant solutions to make it zero.

$$y = 0, y = 4$$

Now, assume $y \neq 0, 4$.

$$\int \frac{1}{y(4-y)} dy = \int \frac{t}{t+1} dy$$
$$LHS = \frac{1}{4} \int (\frac{1}{y} + \frac{1}{4-y}) dy = \frac{1}{4} \ln \left| \frac{y}{4-y} \right|$$

where the constant is absorbed to RHS.

$$RHS = \int (1 - \frac{1}{t+1})dt = t - \ln|1+t| + C_1$$

Hence,

$$\frac{y}{4-y} = C(1+t)^{-4}e^{4t} \Rightarrow y = \frac{4C(1+t)^{-4}e^{4t}}{1+C(1+t)^{-4}e^{4t}}$$

(a). With $y(0) = y_0$, we see that if $y_0 = 4$, y = 4. If $y_0 > 0$, $y_0 \neq 4$, $C = \frac{y_0}{4-y_0}$. Hence the solution is

$$y = \frac{4y_0 e^{4t}}{(4 - y_0)(1 + t)^4 + y_0 e^{4t}}$$

Interestingly, even though y = 4 can't be combined into the expression that contains C, this reduced solution is valid for all $y_0 > 0$ including $y_0 = 4$.

For $y_0 > 0$, taking the limit $t \to \infty$, since $e^{-4t}(1+t)^4 \to 0$, the limit is $\frac{4y_0}{y_0} = 4$.

Some people were analyzing the behavior by the equation directly. That's great but the argument was not convincing. Let me provide one here:

It's clear that y = 0, y = 4 are two solutions. Also, if $y_0 > 4, y > 4$ always because otherwise $y(t_0) = 4$ for some $t_0 > 0$. Then, around t_0 , there are two solutions of the equation that satisfies $y(t_0) = 4$ which contradicts with the existence and uniqueness theorem. Similarly if $0 < y_0 < 4, 0 < y < 4$ is true always. If $y_0 = 4, y = 4$. This means the constant solutions will control the non constant solutions.

Now, if $y_0 > 4$ and hence y > 4, we see that y'(t) < 0 and thus y decreases. Because it's bounded below by 4, $\lim_{t\to\infty} y = Y$ exists. Also,

 $y'(t) \to 0, t \to \infty$ if $y \to Y$ because the function is differentiable for as many times as you want. (To be rigorous, $\int_T^{T+\Delta} y'(t)dt = y(T+\Delta) - y(T) \rightarrow Y - Y = 0$. However, y' < 0, $-\int_T^{T+\Delta} |y'|dt \rightarrow 0$. However, by the equation, $|y'| \to const.$ Then, $|y'| \to 0$). You take the limit on both sides of the equation and have 0 = Y(4 - Y). Since y > 4, the only possibility is Y = 4.

If $0 < y_0 < 4$, the solution increases but will be always below 4. Similarly the limit exists. Also, $y' \to 0$ if the limit exists. Then, the same trick applies. The limit is 4 again.

(b). When $y_0 = 2$, the solution is $y(t) = \frac{4e^{4t}}{(1+t)^4 + e^{4t}}$. Hence, if y(T) =3.99, é

$$e^{4T} = 399(1+T)^4$$

Here we seek the time that is on the right of t = 0 and it is $T \approx 2.8437$ (the -0.91, -1.07 are discarded because they are not the 'first time' as we increase time from t = 0)

(c). We compute $y(2) = \frac{4y_0 e^8}{3^4(4-y_0)+y_0 e^8} \approx \frac{4y_0}{0.0272(4-y_0)+y_0} = \frac{4y_0}{0.9728y_0+0.1087}$ When this is 4.01, $y_0 \approx 4.40$. When this is 3.99, $y_0 \approx 3.66$. Hence $3.66 < y_0 < 4.40$