$$
y^{\prime \prime}+p y^{\prime}+q y=g(t)
$$

1 Undetermined coefficients

This method is applied if the corresponding equation has Constant coefficients and the function g has a special form.For the examples, I'm just listing the forms you should try. In other words, I haven't finished the examples totally

1.1 Polynomial

If g is a polynomial P_{n}, we try $Y=$ Polynomial. The degree of the polynomial we need can be determined by simply checking the degree of the left hand side. Just image you plug in a polynomial of degree m, the degree of the first term is $m-2$. The degree of the second term is $m-1$ if $p \neq 0$ while the degree is 0 if $p=0$. The degree of the third term is m if $q \neq 0$.

Hence, if $q \neq 0$, the polynomial you try should be of the same degree as P_{n}; otherwise, the degree should be raised.

Example 1

$$
y^{\prime \prime}+2 y^{\prime}=3 t+2
$$

The polynomial we try is $Y=A_{1} t^{2}+A_{2} t$ (no constant term since the constant solves the homogeneous equation)

Example 2

$$
y^{\prime \prime}+2 y=3 t+2
$$

The polynomial we use is $Y=A_{1} t+A_{2}$

1.2 Exponential function multiplied by a polynomial

For exponential function multiplied by a polynomial $g=P_{n} \exp (r t)$, we try $Y=Q_{n} t^{s} \exp (r t)$ where Q_{n} is of the same degree as P_{n}. If we should multiply t or not depends on if $\exp (r t)$ solves the homogeneous problem or not. If it solves, we multiply t; if $t \exp (r t)$ also solves, we multiply a t further.

Example 3

$$
y^{\prime \prime}+2 y^{\prime}-3 y=2 e^{t}
$$

We see that the fundamental set is $\left\{e^{t}, e^{-3 t}\right\}$. Here, the polynomial is of degree zero. Hence, we try $C t^{s} e^{t}$. We see that $s=0$ or $C e^{t}$ doesn't work because e^{t} solves the homogeneous problem. Hence, we use $s=1$ or $Y=$ $C t e^{t}$.

Example 4

$$
y^{\prime \prime}+2 y^{\prime}-3 y=2 e^{-t}
$$

We see that the fundamental set is $\left\{e^{t}, e^{-3 t}\right\}$. Here, the polynomial is of degree zero. Hence, we try $C t^{s} e^{t}$. $s=0$ since e^{-t} doesn't solve the homogeneous problem. Hence, $Y=C e^{-t}$

Example 5

$$
y^{\prime \prime}+2 y^{\prime}-3 y=2 t e^{t}
$$

We see that the fundamental set is $\left\{e^{t}, e^{-3 t}\right\}$. Here, the polynomial is of degree 1. Hence, we try $\left(A_{1} t+A_{2}\right) t^{s} e^{t}$. We see that $s=0$ doesn't work because e^{t} solves the homogeneous problem. Hence, we use $s=1$ or $Y=$ $\left(A_{1} t+A_{2}\right) t e^{t}$.

Example 6

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{t}
$$

We see that the fundamental set is $\left\{e^{t}, t e^{t}\right\}$. Here, the polynomial is of degree 0 . Hence, we try $C t^{s} e^{t}$. Since both e^{t} and $t e^{t}$ solve the homogeneous problem, we should try $s=2$ or $Y=C t^{2} e^{t}$

Example 7

$$
y^{\prime \prime}-2 y^{\prime}+y=t^{4} e^{t}
$$

Similar reason: $Y=\left(A t^{4}+B t^{3}+C t^{2}+D\right) t^{2} e^{t}$

1.3 Polynomial times sin or \cos

For $g=P_{n} e^{\alpha t} \cos (\beta t)$ or $g=P_{n} e^{\alpha t} \sin (\beta t)$, we try $Y=Q_{1} t^{s} e^{\alpha t} \cos (\beta t)+$ $Q_{2} t^{2} e^{\alpha t} \sin (\beta t)$ where Q_{1} and Q_{2} are of the same degree as P_{n}. Whether we should multiply t or not depends on whether $e^{\alpha t} \cos (\beta t)(\ldots \sin (\beta t))$ solves the homogeneous problem or not. If it solves, we multiply t; if $t e^{\alpha t} \cos (\beta t)(\ldots \sin (\beta t))$ also solves, we multiply a t further.

Example 8

$$
y^{\prime \prime}+4 y=2 \sin (t)
$$

The polynomial is of degree zero. Hence, we use $Y=\left(C_{1} \cos (t)+C_{2} \sin (t)\right) t^{s}$. Notice that $\sin (t)$ doesn't solve the homogeneous equation. Then, $s=0$, $Y=C_{1} \cos (t)+C_{2} \sin (t)$.

Example 9

$$
y^{\prime \prime}+4 y=2 \sin (2 t)
$$

The polynomial is of degree zero. Hence, we use $Y=\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right) t^{s}$. Notice that $\sin (2 t)$ solves the homogeneous equation. Then, $s=1, Y=$ $C_{1} t \cos (t)+C_{2} t \sin (t)$.

Example 10

$$
y^{\prime \prime}-2 y^{\prime}+5 y=t e^{t} \cos (2 t)
$$

The polynomial is of degree 1. Hence, we use $Y=\left(\left(A_{1} t+A_{2}\right) e^{t} \cos (2 t)+\right.$ $\left.\left(B_{1} t+B_{2}\right) e^{t} \sin (2 t)\right) t^{s}$. Notice that $e^{t} \cos (2 t)$ solves the homogeneous problem, hence $s=1$.

2 Variation of parameters

Just emphasize one thing: Normalize the coefficient of $y^{\prime \prime}$ This method is straightforward but it may result in hard integrals. Let's look at the suggested problems.
\#2. (b). The verification is easy. We just plug in. For example, for $y_{2}=t^{2} \ln t$, by plugging in,
$L H S=t^{2}\left(t^{2} \ln t\right)^{\prime \prime}-3 t\left(t^{2} \ln t\right)^{\prime}+4\left(t^{2} \ln t\right)=t^{2}(2 \ln t+4-1)-3 t(2 t \ln t+t)+4 t^{2} \ln t=0=R H S$
Let's find y_{p} by the variation of parameters. One mistake people tend to make is to use $g=t^{2} \ln t$. This is not OK. We first should normalize the coefficient of $y^{\prime \prime}$ to 1 The equations

$$
\begin{gathered}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=t^{2} \ln t / t^{2}
\end{gathered}
$$

we can compute $W\left(y_{1}, y_{2}\right)=t^{2}(2 t \ln t+t)-2 t t^{2} \ln t=t^{3}$. We solve that

$$
\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
\ln t
\end{array}\right]=\frac{1}{W}\left[\begin{array}{cc}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right]\left[\begin{array}{c}
0 \\
\ln t
\end{array}\right]
$$

Hence, $u_{1}^{\prime}=\frac{-y_{2} \ln t}{W}=-(\ln t)^{2} / t$, which yields $u_{1}=-\int \frac{1}{t}(\ln t)^{2} d t=-\frac{1}{3}(\ln t)^{3}($ we only need one and hence the constant is ignored).

Similarly, $u_{2}^{\prime}=\frac{1}{t} \ln t$ and thus $u_{2}=\frac{1}{2}(\ln t)^{2}$.

$$
y_{p}=t^{2}\left(-\frac{1}{3}(\ln t)^{3}\right)+t^{2} \ln t\left(\frac{1}{2}(\ln t)^{2}\right)=\frac{1}{6} t^{2}(\ln t)^{3}
$$

(a). $t^{2} y^{\prime \prime}-2 y=3 t^{2}-1$. $\left\{t^{2}, t^{-1}\right\}$ (Note: the homogeneous problem can be solved by plugging in t^{n} since it's an Euler's ODE)

$$
Y=u_{1} t^{2}+u_{2} t^{-1}
$$

In our case, $g=\left(3 t^{2}-1\right) / t^{2}$.

$$
W=t^{2}\left(t^{-1}\right)^{\prime}-2 t * t^{-1}=-3
$$

Hence,

$$
u_{1}^{\prime}=-\frac{y_{2} g}{W}=\frac{1}{3}\left(3 t^{-1}-t^{-3}\right) \Rightarrow u_{1}=\ln t+\frac{1}{6} t^{-2}
$$

and

$$
u_{2}^{\prime}=\frac{y_{1} g}{W}=-\frac{1}{3}\left(3 t^{2}-1\right) \Rightarrow u_{2}=-\frac{1}{3} t^{3}+\frac{1}{3} t
$$

Hence,

$$
Y=u_{1} y_{1}+u_{2} y_{2}=t^{2} \ln t-\frac{1}{3} t^{2}+\frac{1}{2}
$$

Notice that $-t^{2} / 3$ is a solution of the homogeneous equation which can be thrown away safely. Hence, we can simply pick

$$
Y=t^{2} \ln t+\frac{1}{2}
$$

but the previous expression is also correct.

