The problem I was talking about in 343 this morning is as following:

$$
\begin{gathered}
y+(2 t+y) y^{\prime}=0 \\
y(0)=\sqrt[3]{4}
\end{gathered}
$$

This is a little different from the one in 341 because I thought the one in 341 was not typical enough.

It's not hard to see $\left(M_{y}-N_{t}\right) /(-M)=1 / y$ only depends on y and hence there is an integrating factor of the form $\mu=\mu(y)$ and

$$
\mu_{y}=\frac{1}{y} \mu
$$

The factor is y. Multiplying the factor and undoing the differentiation, we find

$$
d\left(y^{3} / 3+y^{2} t\right)=0
$$

With the initial condition, we determine that $y^{3} / 3+y^{2} t=4 / 3$
Then, I was talking about how to find the interval of definition. I told you that either y or y^{\prime} blows up at the boundary. By the equation

$$
y^{\prime}=\frac{-y}{2 t+y}
$$

We have if $y=-2 t$, then $y^{\prime}=\infty$. Plugging this into the curve, we have $t^{3}=1$ and $t=1$. I then claimed that $t=1$ is the boundary and the interval is $(-\infty, 1)$. Some students pointed out that the curve is fine at $t=1$ and showed me the curve. I was stuck there.

Now I check that actually at $t=1, y>0$ for the branch we are solving, and the condition we start with $y=-2 t$ is not satisfied. Hence it's OK there. The interval is then $(-\infty, \infty)$ since y is solvable for any t and thus y doesn't blow up

If we want to make the problem interesting, we should change it into

$$
\begin{gathered}
y+(2 t+y) y^{\prime}=0 \\
y(109 / 9)=-1 / 3
\end{gathered}
$$

to pick out the lower branch and the interval now is $(1, \infty)$.

