234 Quiz 7

Section:
Name:
5 pts for each. 20 minutes. Bonus on back.

1. $f(x, y)=x^{3}+y^{3}+3 x y$. Find all critical points and classify them into local maxima, local minima and saddle points
2. $f(x, y, z)=x+2 y+4 z$ has a smallest value on the surface $x y z=1, x>$ $0, y>0, z>0$. Find the value. (Hint: Lagrange multiplier. Argue x, y, z are nonzero so that $1 / x$ is safe. Discuss $\nabla g=0$ also(so g ?))
(Bonus 1: 2pts) In the figure, $B(8,42,0)$ and for all $(x, y), x \leq 8, y \geq 42$, the function value is 0 (namely the function is all zero on the left-upper corner of $B)$. Both B and E are interior local minimum points. Consider the quadratic form $Q(\Delta x, \Delta y)=\frac{1}{2} f_{x x}(a, b) \Delta x^{2}+f_{x y}(a, b) \Delta x \Delta y+\frac{1}{2} f_{y y}(a, b) \Delta y^{2}$. Which kind of form could Q be at B ? How about Q at E ? Explain.

(Bonus 2: 2pts) (a) Explain briefly why $\nabla f \| \nabla g$ at the point where f achieves one extremum on $g=C$. (b). Consider the second regular problem. I'm wondering how to find the maximum value. By solving $\nabla f=\lambda \nabla g, g=C$ and $\nabla g=0, g=C$, I get one point only. We have seen that it's the minimum value point. I'm wondering where the maximum point goes. Please help me.
