234 Quiz 6-15 minutes

1. (7) (a). In the figure below, $B(8,42,0)$ and for all $(x, y), x \leq 8, y \geq 42$, the function value is 0 (namely the function is all zero on the left-upper corner of B). For points A, B, C, D, E, classify them into local maxima, local minima and saddle points(Hint: a global maximum is definitely a local maximum).

(b). Suppose the gradient of f exists everywhere. Mark true or false for the following. No need to explain.

- If $\nabla f(a, b)=0,(a, b)$ is either a local maximum or a local minimum.
- If f achieves the global maximum at $(a, b), f_{x}(a, b)=0, f_{y}(a, b)=0$.
- If f achieves the global minimum at (a, b) which is an interior point, then $\nabla f(a, b)=0$.
- If (a, b) is an interior local maximum and $(x(t), y(t))$ is a parametrized smooth curve so that $x(1)=a, y(1)=b$, then $g(t)=f(x(t), y(t))$ has a local maximum at $t=1$ and $g^{\prime}(1)=0$.

2. (3) Find all critical points for $f(x, y)=x y e^{-x-y}$.
