234 Quiz 5

Section: Name:

18 minutes. Bonus on back

- 1. (6) $F(x,y,z) = e^{x-y} + \ln z z^2$. Consider the **zero set** of this function that passes through $(x_0,1,1)$.
 - (a). Determine x_0 value and compute ∇F at this point
 - (b). Compute the tangent plane of the zero set at point $(x_0, 1, 1)$.
- 2. (4) $f(x,y) = \ln(2+2x+e^y)$. Let's say C is the level set of f passing through (1,0). Locally around (1,0), could we regard the level set C as the graph of an implicit function y = g(x)? If yes, compute $dy/dx|_{x=1} = g'(1)$.

(Bonus: 2 pts) Consider again $f(x,y) = \ln(2+2x+e^y)$ and the level set C that passes through (1,0). Compute the tangent line of C at (1,0) in two ways:

- Using y = g(1) + g'(1) * (x 1)
- Using the fact that ∇f is perpendicular with the tangent line and $\nabla f \cdot (\vec{x}-\vec{x}_0)=0$

Verify that they agree.

Comment: This is true for z = f(x,y) as well. The tangent plane computed using $z = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$ should agree with the tangent plane for the level set F(x,y,z) = f(x,y) - z = 0