234 Quiz 5

Section:
Name:
18 minutes. Bonus on back

1. (6) $F(x, y, z)=e^{x-y}+\ln z-z^{2}$. Consider the zero set of this function that passes through $\left(x_{0}, 1,1\right)$.
(a). Determine x_{0} value and compute ∇F at this point
(b). Compute the tangent plane of the zero set at point $\left(x_{0}, 1,1\right)$.
2. (4) $f(x, y)=\ln \left(2+2 x+e^{y}\right)$. Let's say C is the level set of f passing through $(1,0)$. Locally around (1,0), could we regard the level set C as the graph of an implicit function $y=g(x)$? If yes, compute $d y /\left.d x\right|_{x=1}=g^{\prime}(1)$.
(Bonus: 2 pts) Consider again $f(x, y)=\ln \left(2+2 x+e^{y}\right)$ and the level set C that passes through (1,0). Compute the tangent line of C at $(1,0)$ in two ways:

- Using $y=g(1)+g^{\prime}(1) *(x-1)$
- Using the fact that ∇f is perpendicular with the tangent line and $\nabla f \cdot\left(\vec{x}-\vec{x}_{0}\right)=0$

Verify that they agree.
Comment: This is true for $z=f(x, y)$ as well. The tangent plane computed using $z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$ should agree with the tangent plane for the level set $F(x, y, z)=f(x, y)-z=0$

