1. (6) \(F(x, y, z) = e^{x-y} + \ln z - z^2 \). Consider the zero set of this function that passes through \((x_0, 1, 1)\).
 (a). Determine \(x_0 \) value and compute \(\nabla F \) at this point
 (b). Compute the tangent plane of the zero set at point \((x_0, 1, 1)\).

2. (4) \(f(x, y) = \ln(2+2x+e^y) \). Let’s say \(C \) is the level set of \(f \) passing through \((1, 0)\). Locally around \((1, 0)\), could we regard the level set \(C \) as the graph of an implicit function \(y = g(x) \)? If yes, compute \(\frac{dy}{dx}\big|_{x=1} = g'(1) \).
(Bonus: 2 pts) Consider again \(f(x, y) = \ln(2 + 2x + e^y) \) and the level set \(C \) that passes through \((1, 0)\). Compute the tangent line of \(C \) at \((1, 0)\) in two ways:

- Using \(y = g(1) + g'(1) \cdot (x - 1) \)
- Using the fact that \(\nabla f \) is perpendicular with the tangent line and
 \[\nabla f \cdot (\vec{x} - \vec{x}_0) = 0 \]

Verify that they agree.

Comment: This is true for \(z = f(x, y) \) as well. The tangent plane computed using \(z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \) should agree with the tangent plane for the level set \(F(x, y, z) = f(x, y) - z = 0 \)