234 Quiz 3(Version 2)

Section: Name:
Consider the parabola $y=x^{2}$.

1. (6) One can use $x=t$ to parametrize the curve and get $\vec{x}(t)=\binom{x(t)}{y(t)}$. The curvature κ could be computed using $\frac{1}{\left\|\vec{x}^{\prime}(t)\right\|^{3}}\left\|\vec{x}^{\prime}(t) \times \vec{x}^{\prime \prime}(t)\right\|$. Find this curvature expression. (Notice that this formula only gives you the curvature but not the normal.)
2. (4) Set up the integral of the arclength for the portion between $(0,0)$ and $(1,1)$. You don't have to solve the integral but explain to me which technique of integration is suitable.
3. (Bonus:2) Suppose θ is the angle between the tangent and x-axis. The change of θ is given by $d \theta=\kappa d s=\kappa\left\|\vec{x}^{\prime}(t)\right\| d t$. Compute the total change of the angle of the parabola $\int_{-\infty}^{\infty} \kappa\left\|\vec{x}^{\prime}(t)\right\| d t$ and explain your answer.
