234 Quiz 2

Section: Name:	
----------------	--

15 minutes. There's a bonus problem on back.

- 1. (5+2) (a). Suppose $\vec{a} = \begin{pmatrix} s \\ 1-s \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Find the values of s, so that they make an acute angle. (Hint: $\cos \theta > 0$. Be sure to exclude $\theta = 0$ when $\vec{a} \parallel \vec{b}$.)
 - (b). For two vectors \vec{a}, \vec{b} , the value of $(\vec{a} \times \vec{b}) \cdot \vec{b}$ is _____. Why?
- 2. (3) Suppose A(1, -1, 2) and B(2, 1, 3). Parametrize the **line segment** AB. (Hint: In other words, find a vector-valued function $\vec{x}(t)$ so that the curve it traces out as t varies is the line segment. If you like, you can think about a particle moving from A towards B with a constant velocity \overrightarrow{AB} .)

Bonus: For a charged particle with charge q moving in a magnetic field \vec{B} , the Lorentz force acting on it is $\vec{F}=q\vec{v}\times\vec{B}$ where \vec{v} is the velocity vector. Use Newton's law $\vec{F}=m\frac{d}{dt}\vec{v}$ to show that the speed $\|\vec{v}\|$ doesn't change if the Lorentz force is the only force acting on the particle. (2 pts)