234 Quiz 2

Section:
Name:
15 minutes. There's a bonus problem on back.

1. $(5+2)$ (a). Suppose $\vec{a}=\binom{s}{1-s}$ and $\vec{b}=\binom{2}{3}$. Find the values of s, so that they make an acute angle. (Hint: $\cos \theta>0$. Be sure to exclude $\theta=0$ when $\vec{a} \| \vec{b}$.)
(b). For two vectors \vec{a}, \vec{b}, the value of $(\vec{a} \times \vec{b}) \cdot \vec{b}$ is \qquad . Why?
2. (3) Suppose $A(1,-1,2)$ and $B(2,1,3)$. Parametrize the line segment $A B$. (Hint: In other words, find a vector-valued function $\vec{x}(t)$ so that the curve it traces out as t varies is the line segment. If you like, you can think about a particle moving from A towards B with a constant velocity $\overrightarrow{A B}$.)

Bonus: For a charged particle with charge q moving in a magnetic field \vec{B}, the Lorentz force acting on it is $\vec{F}=q \vec{v} \times \vec{B}$ where \vec{v} is the velocity vector. Use Newton's law $\vec{F}=m \frac{d}{d t} \vec{v}$ to show that the speed $\|\vec{v}\|$ doesn't change if the Lorentz force is the only force acting on the particle. (2 pts)

