234 Quiz 9

1. (a)(3) Mark true or false for the following(No need to explain):

- $\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{c}^{d} \int_{a}^{b} f(x, y) d y d x$ True. Rectangle. Fubini.
- $\int_{0}^{1} \int_{x^{2}}^{x} f(x, y) d y d x=\int_{x^{2}}^{x} \int_{0}^{1} f(x, y) d x d y$ False. Obviously the final answer can't depend on x. Not rectangle. Must change the limits for the iterated integral.
- $\int_{0}^{100} \int_{0}^{100} f(x) f(y) d x d y=\left(\int_{0}^{100} f(x) d x\right)^{2}$ True.
(b)(4) Let $D=\left\{(x, y): 0 \leq y \leq 1, y^{2} \leq x \leq 1\right\}$. Compute the volume under the graph of the function $f(x, y)=y \sin \left(x^{2}\right)$ and above D.
The integral is

$$
\int_{0}^{1} \int_{y^{2}}^{1} y \sin \left(x^{2}\right) d x d y
$$

This integral is impossible to evaluate in this order. We change the order of integration. The region can be written as $\{(x, y): 0 \leq x \leq 1,0 \leq y \leq \sqrt{x}\}$. Hence
$\int_{0}^{1} \int_{0}^{\sqrt{x}} y \sin \left(x^{2}\right) d y d x=\int_{0}^{1} \frac{1}{2} x \sin \left(x^{2}\right) d x=-\left.\frac{1}{4} \cos \left(x^{2}\right)\right|_{0} ^{1}=\frac{1}{4}(1-\cos 1)$
2. (5) Set up the integral in polar coordinates without solving:

The volume under $f(x, y)=x^{2}$ and above the region $D=\left\{(x, y): x^{2}+\right.$ $\left.y^{2} \geq 4, x^{2}+(y-2)^{2} \leq 4\right\}$
Soln. The integral is $\int_{D} f d A$.
In polar coordinates, $x=r \cos \theta$ and hence $f=r^{2} \cos ^{2} \theta$. The two regions in polar could be written as $r \geq 2$ and $r \leq 4 \sin \theta$ respectively. (For the second, plug in $x=r \cos \theta, y=r \sin \theta$, and you get $r^{2}-4 r \sin \theta+4 \leq 4$).
When the two curves intersect, you have $2=r=4 \sin \theta$. Hence $\theta=$ $\pi / 6,5 \pi / 6$. The region is therefore $\pi / 6 \leq \theta \leq 5 \pi / 6,2 \leq r \leq 4 \sin \theta$.
$d A=r d r d \theta$ and the integral is

$$
\int_{\pi / 6}^{5 \pi / 6} \int_{2}^{4 \sin \theta} r^{2} \cos ^{2} \theta(r d r d \theta)=\int_{\pi / 6}^{5 \pi / 6} \int_{2}^{4 \sin \theta} r^{3} \cos ^{2} \theta d r d \theta
$$

