
Keys-Quiz 7

1. f(x, y) = x3 + y3 + 3xy. Find all critical points and classify them into
local maxima, local minima and saddle points.

Soln. For critical points, we have

fx = 3x2 + 3y = 0
fy = 3y2 + 3x = 0

From the first equation, we have y = −x2. Plug this into the second, we
get 3(−x2)2 + 3x = 0 or x(x3 + 1) = 0. Hence, we have x = 0 or x = −1.
For x = 0, we get y = −02 = 0; for x = −1, we get y = −(−1)2 = −1. We
have two critical points (0, 0) and (−1,−1).

To classify them, we use 2nd derivative test. We compute fxx = 6x; fxy =
3; fyy = 6y. The quadratic form is 1

2fxx∆x2 + fxy∆x∆y + 1
2fyy∆y2 and

we only need to check the number fxxfyy − f2xy.

At point (0, 0), this number is 0∗0−32 < 0 and the form is indefinite. (0, 0)
is a saddle point. At (−1,−1), this number is (−6) ∗ (−6)− 32 = 27 > 0.
We also notice fxx/2 = −3 < 0. The form here is negative definite. Then
(−1,−1) is a local max.

2. f(x, y, z) = x + 2y + 4z has a smallest value on the surface xyz = 1, x >
0, y > 0, z > 0. Find the value. (Hint: Lagrange multiplier. Argue x, y, z
are nonzero so that 1/x is safe. Discuss ∇g = 0 also(so g?))

Soln. Let g(x, y, z) = xyz = 1. We consider two cases ∇g = 0, g = 1 and
∇f = λ∇g, g = 1. Notice that ∇g = (yz, xz, xy). If ∇g = 0, then one of
x, y, z must be zero, which contradicts with xyz = 1. That means we only
have the second case.

Writing out the second case, we have

1 = λyz
2 = λxz
4 = λxy
xyz = 1

Notice that xyz = 1 implies yz = 1/x since x 6= 0. The first equation is
1 = λ/x or x = λ. Similarly, the second equation tells you 2y = λ and
the third equation tells you 4z = λ. In other words, we have x = 2y = 4z.
Using xyz = 1, we solve x = 2, y = 1, z = 1/2. We only have one
candidate. We know the minimum point exists and this must be the
minimum point. The values is 2 + 2(1) + 4(1/2) = 6
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(Bonus 1: 2pts) In the figure, B(8, 42, 0) and for all (x, y), x ≤ 8, y ≥ 42,
the function value is 0(namely the function is all zero on the left-upper corner of
B). Both B and E are interior local minimum points. Consider the quadratic
form Q(∆x,∆y) = 1

2fxx(a, b)∆x2+fxy(a, b)∆x∆y+ 1
2fyy(a, b)∆y2. Which kind

of form could Q be at B? How about Q at E? Explain.

Soln. Since the points are minimum points, the form can’t be negative
definite(otherwise, local max), indefinite(otherwise, saddle). We are left with
two cases: semidefinite and positive definite. It’s clear that at E the graph is
like a bowl and the form there should be positive definite. At B, the graph is
kind of flat, which is not like a bowl. The only possibility is that it’s semidefinite
at B. (Actually, you can determine fxx = fxy = fyy = 0)

(Bonus 2: 2pts) (a) Explain briefly why ∇f ‖ ∇g at the point where f
achieves one extremum on g = C. (b). Consider the second regular problem.
I’m wondering how to find the maximum value. By solving ∇f = λ∇g, g = C
and ∇g = 0, g = C, I get one point only. We have seen that it’s the minimum
value point. I’m wondering where the maximum point goes. Please help me.

Soln. (a). Ommited. See your notes for lecture and discussion. The
simplest way is to say the two level sets are tangent to each other at the ex-
tremum. (b). The reason is that there’s no maximum point. For example,
x = 0.0001, y = 0.0001, your z = 1/(xy) = 108 and f = x + 2y + 4z is large.
This can keep going. Now you see the importance of the theorem in this chap-
ter: if the domain is bounded and closed, then we are guaranteed that there’s
a maximum and there’s a minimum. Here, g = C is not a bounded domain.
If you know there’s an extremum, then it must be from the points you find by
solving Lagrange multiplier equations.
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