Keys-Quiz 6

1. (7) (a). In the figure below, $B(8,42,0)$ and for all $(x, y), x \leq 8, y \geq 42$, the function value is 0 (namely the function is all zero on the left-upper corner of B). For points A, B, C, D, E, classify them into local maxima, local minima and saddle points(Hint: a global maximum is definitely a local maximum).

Soln. A is a global max and thus also a local max; C is a saddle point(in one direction, it's min but in another direction, it's max. In all, it's a saddle.); D is a local max and E is a local min. For B, notice that in a small ball that contains B, the function value is at least 0 which is the value at B. Thus B is a local min.
(b). Suppose the gradient of f exists everywhere in the domain. Mark true or false for the following. No need to explain.

- If $\nabla f(a, b)=0,(a, b)$ is either a local maximum or a local minimum. False. Consider a saddle.
- If f achieves the global maximum at $(a, b), f_{x}(a, b)=0, f_{y}(a, b)=0$. False. Consider a boundary maximum.
- If f achieves the global minimum at (a, b) which is an interior point, then $\nabla f(a, b)=0$. True. You should compare with the previous one.
- If (a, b) is an interior local maximum and $(x(t), y(t))$ is a parametrized smooth curve so that $x(1)=a, y(1)=b$, then $g(t)=f(x(t), y(t))$ has a local maximum at $t=1$ and $g^{\prime}(1)=0$. True.

2. (3) Find all critical points for $f(x, y)=x y e^{-x-y}$.

Soln. $\nabla f=\overrightarrow{0}$. Then, $f_{x}=0, f_{y}=0$.

$$
\begin{gathered}
f_{x}=(x y)_{x} e^{-x-y}+x y\left(e^{-x-y}\right)_{x}=y e^{-x-y}+x y\left(-e^{-x-y}\right)=y e^{-x-y}(1-x)=0 \\
f_{y}=x e^{-x-y}(1-y)=0
\end{gathered}
$$

By the first equation, $y=0$ or $x=1$. If $y=0$, plugging into the second equation: $x e^{-x-0}(1-0)=0$ or $x=0$. If $x=1$, plugging into the second equation yields $e^{-1-y}(1-y)=0$ or $y=1$. C.P.: $(0,0)$ and $(1,1)$

