Keys-Quiz 5

1. (6) $F(x, y, z)=e^{x-y}+\ln z-z^{2}$. Consider the zero set of this function that passes through $\left(x_{0}, 1,1\right)$.
(a). Determine x_{0} value and compute ∇F at this point
(b). Compute the tangent plane of the zero set at point $\left(x_{0}, 1,1\right)$.

Soln. (a). The zero set condition implies that

$$
e^{x_{0}-1}+\ln 1-1^{2}=0 \Rightarrow e^{x_{0}-1}=1 \Rightarrow x_{0}=1
$$

The gradient is

$$
\nabla F(x, y, z)=\left(\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right)=\left(\begin{array}{c}
e^{x-y} \\
-e^{x-y} \\
\frac{1}{z}-2 z
\end{array}\right)
$$

Evaluating it at $(1,1,1)$, we get

$$
\nabla F(1,1,1)=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
$$

(b). $\quad \nabla F(1,1,1)$ is a normal vector of the tangent plane and thus the tangent plane is

$$
\nabla F(1,1,1) \cdot\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{c}
x_{0} \\
1 \\
1
\end{array}\right)\right)=0
$$

or $1(x-1)-1(y-1)-1(z-1)=0$
Comment: Some students made the following mistakes:
A. tangent $=\nabla F \cdot((x, y, z)-(1,1,1))$. This is not true because you should give an equation for the tangent plane. Written like this, it's not even an equation. You should have $\nabla F \cdot((x, y, z)-(1,1,1))=0$
B. Some people had

$$
\left(\begin{array}{c}
e^{x-y} \\
-e^{x-y} \\
\frac{1}{z}-2 z
\end{array}\right) \cdot\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right)=0
$$

and got complicated $e^{x-y}(x-1)+\ldots=0$ etc. This is also wrong since we need the normal vector ∇F of the tangent plane at $(1,1,1)$ only. You should evaluate the gradient at $(1,1,1)$. The x value in the gradient is just 1. It's different from the x in the expression $(x-1)$. The ' x^{\prime} in ' $(x-1)^{\prime}$ is the x coordinate of an arbitrary point on the plane, which can be any value, not just 1.
2. (4) $f(x, y)=\ln \left(2+2 x+e^{y}\right)$. Let's say C is the level set of f passing through $(1,0)$. Locally around (1,0), could we regard the level set C as the graph of an implicit function $y=g(x)$? If yes, compute $d y /\left.d x\right|_{x=1}=g^{\prime}(1)$.
Comment: I have rewritten the solution in a more organized way. In exam, you can follow this way to organize you solution.
Soln. We regard y as a function of $x: y=y(x)$. Thus, we have

$$
f(x, y(x))=c
$$

Taking derivative on x, we have:

$$
f_{x}(x, y(x))+f_{y}(x, y(x)) * \frac{d y}{d x}=0
$$

Let's check

$$
f_{y}=\frac{e^{y}}{2+2 x+e^{y}}
$$

Evaluating this at $x=1, y(1)=0$ (this is because the level set passes through $(1,0)$ and the y coordinate should be the function value if the function exists), we see

$$
f_{y}(1,0)=\frac{1}{2+2+1}=\frac{1}{5} \neq 0
$$

The function exists locally.
Solving the above yields

$$
g^{\prime}(x)=\frac{d y}{d x}=-\frac{f_{x}(x, y(x))}{f_{y}(x, y(x))}
$$

Let's compute f_{x} :

$$
f_{x}=\frac{2}{2+2 x+e^{y}} \Rightarrow f_{x}(1,0)=\frac{2}{5}
$$

The derivative is therefore:

$$
g^{\prime}(1)=\left.\frac{d y}{d x}\right|_{x=1}=-\frac{2 / 5}{1 / 5}=-2
$$

(Bonus: 2 pts) Consider again $f(x, y)=\ln \left(2+2 x+e^{y}\right)$ and the level set C that passes through $(1,0)$. Compute the tangent line of C at $(1,0)$ in two ways:

- Using $y=g(1)+g^{\prime}(1) *(x-1)$
- Using the fact that ∇f is perpendicular with the tangent line and $\nabla f \cdot\left(\vec{x}-\vec{x}_{0}\right)=0$

Verify that they agree.
Comment: This is true for $z=f(x, y)$ as well. The tangent plane computed using $z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$ should agree with the tangent plane for the level set $F(x, y, z)=f(x, y)-z=0$

Soln.
From the solution above, we see that $g(1)=0$ and $g^{\prime}(1)=-2$. The tangent line is

$$
y=0-2(x-1)
$$

Using the other way,

$$
\nabla f=\binom{2 /\left(2+2 x+e^{y}\right)}{e^{y} /\left(2+2 x+e^{y}\right)}
$$

Evaluating at $(1,0)$, we have

$$
\nabla f=\binom{2 / 5}{1 / 5}
$$

The tangent line is

$$
\binom{2 / 5}{1 / 5} \cdot\left(\binom{x}{y}-\binom{1}{0}\right)=0
$$

This gives you $2(x-1)+y=0$ which agrees with the above.

