Keys-Quiz 5

- 1. (6) $F(x, y, z) = e^{x-y} + \ln z z^2$. Consider the **zero set** of this function that passes through $(x_0, 1, 1)$.
 - (a). Determine x_0 value and compute ∇F at this point
 - (b). Compute the tangent plane of the zero set at point $(x_0, 1, 1)$.

Soln. (a). The zero set condition implies that

$$e^{x_0-1} + \ln 1 - 1^2 = 0 \Rightarrow e^{x_0-1} = 1 \Rightarrow x_0 = 1$$

The gradient is

$$\nabla F(x,y,z) = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} e^{x-y} \\ -e^{x-y} \\ \frac{1}{z} - 2z \end{pmatrix}$$

Evaluating it at (1,1,1), we get

$$\nabla F(1,1,1) = \left(\begin{array}{c} 1\\ -1\\ -1 \end{array}\right)$$

(b). $\nabla F(1,1,1)$ is a normal vector of the tangent plane and thus the tangent plane is

$$\nabla F(1,1,1) \cdot \left(\left(\begin{array}{c} x \\ y \\ z \end{array} \right) - \left(\begin{array}{c} x_0 \\ 1 \\ 1 \end{array} \right) \right) = 0$$

or
$$1(x-1) - 1(y-1) - 1(z-1) = 0$$

Comment: Some students made the following mistakes:

- A. tangent = $\nabla F \cdot ((x, y, z) (1, 1, 1))$. This is not true because you should give an equation for the tangent plane. Written like this, it's not even an equation. You should have $\nabla F \cdot ((x, y, z) (1, 1, 1)) = 0$
- B. Some people had

$$\begin{pmatrix} e^{x-y} \\ -e^{x-y} \\ \frac{1}{z} - 2z \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix} = 0$$

and got complicated $e^{x-y}(x-1) + \ldots = 0$ etc. This is also wrong since we need the normal vector ∇F of the tangent plane at (1,1,1) only. You should evaluate the gradient at (1,1,1). The x value in the gradient is just 1. It's different from the x in the expression (x-1). The x in x in x in the x coordinate of an arbitrary point on the plane, which can be any value, not just 1.

2. (4) $f(x,y) = \ln(2+2x+e^y)$. Let's say C is the level set of f passing through (1,0). Locally around (1,0), could we regard the level set C as the graph of an implicit function y = g(x)? If yes, compute $dy/dx|_{x=1} = g'(1)$.

Comment: I have rewritten the solution in a more organized way. In exam, you can follow this way to organize you solution.

Soln. We regard y as a function of x: y = y(x). Thus, we have

$$f(x, y(x)) = c$$

Taking derivative on x, we have:

$$f_x(x, y(x)) + f_y(x, y(x)) * \frac{dy}{dx} = 0$$

Let's check

$$f_y = \frac{e^y}{2 + 2x + e^y}$$

Evaluating this at x = 1, y(1) = 0 (this is because the level set passes through (1,0) and the y coordinate should be the function value if the function exists), we see

$$f_y(1,0) = \frac{1}{2+2+1} = \frac{1}{5} \neq 0$$

The function exists locally.

Solving the above yields

$$g'(x) = \frac{dy}{dx} = -\frac{f_x(x, y(x))}{f_y(x, y(x))}$$

Let's compute f_x :

$$f_x = \frac{2}{2 + 2x + e^y} \Rightarrow f_x(1,0) = \frac{2}{5}$$

The derivative is therefore:

$$g'(1) = \frac{dy}{dx}|_{x=1} = -\frac{2/5}{1/5} = -2$$

(Bonus: 2 pts) Consider again $f(x,y) = \ln(2+2x+e^y)$ and the level set C that passes through (1,0). Compute the tangent line of C at (1,0) in two ways:

- Using y = g(1) + g'(1) * (x 1)
- Using the fact that ∇f is perpendicular with the tangent line and $\nabla f \cdot (\vec{x} \vec{x}_0) = 0$

Verify that they agree.

Comment: This is true for z = f(x,y) as well. The tangent plane computed using $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ should agree with the tangent plane for the level set F(x, y, z) = f(x, y) - z = 0

Soln

From the solution above, we see that g(1) = 0 and g'(1) = -2. The tangent line is

$$y = 0 - 2(x - 1)$$

Using the other way,

$$\nabla f = \begin{pmatrix} 2/(2+2x+e^y) \\ e^y/(2+2x+e^y) \end{pmatrix}$$

Evaluating at (1,0), we have

$$\nabla f = \left(\begin{array}{c} 2/5\\ 1/5 \end{array}\right)$$

The tangent line is

$$\left(\begin{array}{c} 2/5 \\ 1/5 \end{array}\right) \cdot \left(\left(\begin{array}{c} x \\ y \end{array}\right) - \left(\begin{array}{c} 1 \\ 0 \end{array}\right)\right) = 0$$

This gives you 2(x-1) + y = 0 which agrees with the above.