Keys-Quiz 4

1. (4) Consider the quadratic form $Q(x, y)=-2 x y+\frac{1}{2} y^{2}$. Determine which kind of form this is and write it in standard form by completing the square.(Hint: if x^{2} is present, you can use x^{2} to complete the square, but x^{2} is absent here and you can use y^{2}.)
Soln. In this quadratic form $A=0, B=-2, C=1 / 2$ and $4 A C-B^{2}=$ $0-4<0$. The form is indefinite.
To complete the square, we have

$$
\begin{aligned}
Q(x, y)=\frac{1}{2}\left(y^{2}-\right. & 4 x y)=\frac{1}{2}\left(y^{2}-4 x y+4 x^{2}-4 x^{2}\right) \\
& =\frac{1}{2}\left((y-2 x)^{2}-4 x^{2}\right)=\frac{1}{2}(y-2 x)^{2}-2 x^{2}=u^{2}-v^{2}
\end{aligned}
$$

2. (6) Compute $f_{x}($ or $\partial f / \partial x)$ and $f_{y}($ or $\partial f / \partial y)$ for the two functions:

- $f(x, y)=x y \ln (x y)$
- $f(x, y)=g(\sin (x y))$
where in the second, g is a single-variable function. (Notice that the first is your homework)
Soln. The first function is to test product rule.

$$
f_{x}(x, y)=(x y)_{x} \ln (x y)+x y(\ln (x y))_{x}=y \ln (x y)+x y \frac{1}{x y}(x y)_{x}=y \ln (x y)+y
$$

Similarly.

$$
f_{y}(x, y)=x \ln (x y)+x
$$

The second function is to test chain rule:

$$
f_{x}(x, y)=g^{\prime}(\sin (x y))(\sin (x y))_{x}=g^{\prime}(\sin (x y)) \cos (x y)(x y)_{x}=g^{\prime}(\sin (x y)) \cos (x y) y
$$

Similarly,

$$
f_{y}(x, y)=g^{\prime}(\sin (x y)) \cos (x y) x
$$

Bonus(2 pts) Consider the function $f(x, y)=\frac{x y}{x^{2}+y^{2}}$. If I define the value of this function at $(0,0)$ to be 0 , would it be continuous at $(0,0)$?

Soln. Let $x=r \cos \theta, y=r \sin \theta$. Not at the origin, we have

$$
f(x(r, \theta), y(r, \theta))=\frac{\cos \theta \sin \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\cos \theta \sin \theta
$$

The limit $(x, y) \rightarrow(0,0)$ is equivalent to $r \rightarrow 0$. We see that the limit depends on θ and the limit doesn't exist.

The function can't be continuous at the origin no matter what value we assign.

