Key-Quiz 3(Version 2)

Consider the parabola $y=x^{2}$.

1. (6) One can use $x=t$ to parametrize the curve and get $\vec{x}(t)=\binom{x(t)}{y(t)}$. The curvature κ could be computed using $\frac{1}{\left\|\vec{x}^{\prime}(t)\right\|^{3}}\left\|\vec{x}^{\prime}(t) \times \vec{x}^{\prime \prime}(t)\right\|$. Find this curvature expression. (Notice that this formula only gives you the curvature but not the normal.)
Soln. If we pick $x(t)=t$, then $y(t)=x(t)^{2}=t^{2}$. Therefore, the parametrization is

$$
\vec{x}(t)=\binom{t}{t^{2}}
$$

It's easy to compute $\vec{x}^{\prime}(t)=(1,2 t)^{T}$ and $\vec{x}^{\prime \prime}(t)=(0,2)^{T}$ where T means transpose. Then, we have $\left\|\vec{x}^{\prime}(t)\right\|=\sqrt{1+4 t^{2}}$ and

$$
\vec{x}^{\prime}(t) \times \vec{x}^{\prime \prime}(t)=\hat{k}\left|\begin{array}{cc}
1 & 2 t \\
0 & 2
\end{array}\right|=2 \hat{k}
$$

where the cross product is computed by adding 0 in the third column.
By the formula, the curvature is therefore

$$
\kappa=\frac{\|2 \hat{k}\|}{\sqrt{1+4 t^{2}}}=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}
$$

2. (4) Set up the integral of the arclength for the portion between $(0,0)$ and $(1,1)$. You don't have to solve the integral but explain to me which technique of integration is suitable.
Soln. At $(0,0), t=0$ and at $(1,1), t=1$. Then, the arclength is

$$
L=\int_{0}^{1}\left\|\vec{x}^{\prime}(t)\right\| d t=\int_{0}^{1} \sqrt{1+4 t^{2}} d t
$$

This integral could be finished by trig substitution $2 t=\tan \theta$
3. (Bonus:2) Suppose θ is the angle between the tangent and x-axis. The change of θ is given by $d \theta=\kappa d s=\kappa\left\|\vec{x}^{\prime}(t)\right\| d t$. Compute the total change of the angle of the parabola $\int_{-\infty}^{\infty} \kappa\left\|\vec{x}^{\prime}(t)\right\| d t$ and explain your answer.
Soln. (An interesting fact is that this θ is exactly the one in the trig sub above... Anyway, let's compute...)
By the curvature we have already. the total change is
$\Delta \theta=\int_{-\infty}^{\infty} \frac{2}{\left(1+4 t^{2}\right)^{3 / 2}} \sqrt{1+4 t^{2}} d t=\int_{-\infty}^{\infty} \frac{2}{1+4 t^{2}} d t=\left.\arctan (2 t)\right|_{-\infty} ^{\infty}=\pi$
At $-\infty$, the tangent is pointing downward and $\theta(-\infty)=-\pi / 2$ and at ∞, the tangent is pointing upward and $\theta(\infty)=\pi / 2$. The difference is exactly π.

