234 Quiz 3-Keys

1. Let $\vec{x}(t)=\binom{t^{2}}{t}$. Compute the curvature κ and the unit normal vector $\vec{N} .($ Hint: you may want to use $\|\lambda \vec{a}\|=|\lambda|\|\vec{a}\|)$
Soln. Recall the formula $\vec{\kappa}=\frac{d}{d s} \vec{T}=\frac{1}{\left\|\vec{x}^{\prime}(t)\right\|} \frac{d}{d t} \vec{T}$. We need the unit tangent first:

$$
\vec{T}(t)=\frac{\vec{x}^{\prime}(t)}{\left\|\vec{x}^{\prime}(t)\right\|}=\frac{1}{\sqrt{1+4 t^{2}}}\binom{2 t}{1}
$$

The the curvature vector is

$$
\begin{aligned}
\vec{\kappa}(t) & =\frac{1}{\left\|\vec{x}^{\prime}(t)\right\|} \frac{d}{d t} \vec{T}=\frac{1}{\sqrt{1+4 t^{2}}}\left(\frac{1}{\sqrt{1+4 t^{2}}}\binom{2 t}{1}\right)^{\prime} \\
& =\frac{1}{\sqrt{1+4 t^{2}}}\left(-4 t \frac{1}{\left(1+4 t^{2}\right)^{3 / 2}}\binom{2 t}{1}+\frac{1}{\left(1+4 t^{2}\right)^{1 / 2}}\binom{2}{0}\right) \\
& =\frac{1}{\left(1+4 t^{2}\right)}\left(\frac{1}{1+4 t^{2}}\binom{-8 t^{2}}{-4 t}+\binom{2}{0}\right)=\frac{1}{\left(1+4 t^{2}\right)^{2}}\binom{2}{-4 t}
\end{aligned}
$$

The curvature is then the magnitude of the curvature vector and thus

$$
\kappa=\|\vec{\kappa}\|=\frac{2}{\left(1+4 t^{2}\right)^{2}}\left\|\binom{1}{-2 t}\right\|=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}
$$

The normal is just the direction of the curvature vector which is also the direction of $\binom{1}{-2 t}$ and hence

$$
\vec{N}=\frac{1}{\left\|\binom{1}{-2 t}\right\|}\binom{1}{-2 t}=\frac{1}{\sqrt{1+4 t^{2}}}\binom{1}{-2 t}
$$

The next problem is on next page
2. (6) Let $\vec{x}(t)=\left(\begin{array}{c}t^{2} \cos t \\ t^{2} \sin t \\ t^{2}\end{array}\right)$ where $t \geq 0$. Compute the acceleration at $t=0$ and the arclength of the portion from $t=0$ to $t=1$.
Soln. We compute the velocity as

$$
\vec{v}(t)=\vec{x}^{\prime}(t)=\left(\begin{array}{c}
2 t \cos t-t^{2} \sin t \\
2 t \sin t+t^{2} \cos t \\
2 t
\end{array}\right)
$$

The acceleration is $\vec{a}(t)=\vec{v}^{\prime}(t)$. Notice that at $t=0$, all the terms containing t would vanish. Therefore, the derivative of the first entry at $t=0$ only leaves us $2 \cos 0+0(\ldots)=2$. Similarly, the derivative of the second entry yields $2 \sin 0+0(\ldots)=0$. The third entry is 2 . Thus the acceleration at $t=0$ is

$$
\vec{a}(0)=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

The speed is

$$
\begin{gathered}
\left\|\vec{x}^{\prime}(t)\right\|=\sqrt{\left(2 t \cos t-t^{2} \sin t\right)^{2}+\left(2 t \sin t+t^{2} \cos t\right)^{2}+4 t^{2}} \\
=\sqrt{\left(4 t^{2} \cos ^{2} t-4 t^{3} \cos t \sin t+t^{4} \sin ^{2} t\right)+\left(4 t^{2} \sin ^{2} t+4 t^{3} \cos t \sin t+t^{4} \cos ^{2} t\right)+4 t^{2}} \\
=\sqrt{4 t^{2}+t^{4}+4 t^{2}}=\sqrt{8 t^{2}+t^{4}}=t \sqrt{t^{2}+8}
\end{gathered}
$$

If you noticed, you can pull out t at the very beginning. $\vec{v}=t(\ldots)$ and compute the magnitude of the remaining part. The arc length is therefore

$$
L=\int_{0}^{1} t \sqrt{t^{2}+8} d t=\frac{1}{2} \int_{u=8}^{u=9} \sqrt{u} d u
$$

where $u=t^{2}+8$. The the integral is $\left.\frac{1}{3} u^{3 / 2}\right|_{8} ^{9}=\frac{1}{3}\left(3^{3}-8^{3 / 2}\right)=9-\frac{16}{3} \sqrt{2}$

