234 Quiz 2-Keys

1. (a). Suppose $\vec{a}=\binom{s}{1-s}$ and $\vec{b}=\binom{2}{3}$. Find the values of s, so that they make an acute angle. (Hint: $\cos \theta>0$. Be sure to exclude $\theta=0$ when $\vec{a} \| \vec{b}$.)
Solution: Here, $\cos \theta>0$ implies $\vec{a} \cdot \vec{b}>0$ if $|\vec{a}|>0,|\vec{b}|>0$ which are true in our case.
Therefore, $\vec{a} \cdot \vec{b}=s * 2+(1-s) * 3=3-s>0$ and $s<3$.
However, if $\vec{a} \| \vec{b}$, we have $s / 2=(1-s) / 3($ or $\vec{a} \times \vec{b}=0$. The 2D vectors could be augmented to $3 D$ vectors by adding 0 in the last entry.) which implies that $s=2 / 5$ if they are parallel.
The answer is $s<3$ and $s \neq 2 / 5$.
(b). For two vectors \vec{a}, \vec{b}, the value of $(\vec{a} \times \vec{b}) \cdot \vec{b}$ is \qquad . Why?
Solution: The answer is 0 because $\vec{a} \times \vec{b} \perp \vec{b}$
2. (3) Suppose $A(1,-1,2)$ and $B(2,1,3)$. Parametrize the line segment $A B$. (Hint: In other words, find a vector-valued function $\vec{x}(t)$ so that the curve it traces out as t varies is the line segment. If you like, you can think about a particle moving from A towards B with a constant velocity $\overrightarrow{A B}$.)
Solution: If you start with A and go to B with some velocity \vec{v}, the position you are at time t is $\overrightarrow{O A}+t \vec{v}$. Choosing $\vec{v}=\overrightarrow{A B}=(1,2,1)$ is convenient. Therefore, the line you get would be $(1,-1,2)+t(1,2,1)$. For the line segment, you need $0 \leq t \leq 1$.

Bonus: For a charged particle with charge q moving in a magnetic field \vec{B}, the Lorentz force acting on it is $\vec{F}=q \vec{v} \times \vec{B}$ where \vec{v} is the velocity vector. Use Newton's law $\vec{F}=m \frac{d}{d t} \vec{v}$ to show that the speed $\|\vec{v}\|$ doesn't change if the Lorentz force is the only force acting on the particle. (2 pts)

Solution: It's clear that $\vec{F} \cdot \vec{v}=0$ and thus $\vec{v} \cdot \frac{d}{d t} \vec{v}=0$ which means $\frac{d}{d t}\|\vec{v}\|^{2}=$ 0.

