234 Quiz 2-Keys

1. (a). Suppose $\vec{a} = \begin{pmatrix} s \\ 1-s \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Find the values of s, so that they make an acute angle. (Hint: $\cos \theta > 0$. Be sure to exclude $\theta = 0$ when $\vec{a} \parallel \vec{b}$.)

Solution: Here, $\cos \theta > 0$ implies $\vec{a} \cdot \vec{b} > 0$ if $|\vec{a}| > 0$, $|\vec{b}| > 0$ which are true in our case.

Therefore, $\vec{a} \cdot \vec{b} = s * 2 + (1 - s) * 3 = 3 - s > 0$ and s < 3.

However, if $\vec{a} \parallel \vec{b}$, we have s/2 = (1-s)/3 (or $\vec{a} \times \vec{b} = 0$. The 2D vectors could be augmented to 3D vectors by adding 0 in the last entry.) which implies that s = 2/5 if they are parallel.

The answer is s < 3 and $s \neq 2/5$.

(b). For two vectors \vec{a}, \vec{b} , the value of $(\vec{a} \times \vec{b}) \cdot \vec{b}$ is _____. Why?

Solution: The answer is 0 because $\vec{a} \times \vec{b} \perp \vec{b}$

2. (3) Suppose A(1,-1,2) and B(2,1,3). Parametrize the **line segment** AB. (Hint: In other words, find a vector-valued function $\vec{x}(t)$ so that the curve it traces out as t varies is the line segment. If you like, you can think about a particle moving from A towards B with a constant velocity \overrightarrow{AB} .) Solution: If you start with A and go to B with some velocity \vec{v} , the position you are at time t is $\overrightarrow{OA} + t\vec{v}$. Choosing $\vec{v} = \overrightarrow{AB} = (1, 2, 1)$ is convenient. Therefore, the line you get would be (1, -1, 2) + t(1, 2, 1). For the line segment, you need $0 \le t \le 1$.

Bonus: For a charged particle with charge q moving in a magnetic field \vec{B} , the Lorentz force acting on it is $\vec{F}=q\vec{v}\times\vec{B}$ where \vec{v} is the velocity vector. Use Newton's law $\vec{F}=m\frac{d}{dt}\vec{v}$ to show that the speed $\|\vec{v}\|$ doesn't change if the Lorentz force is the only force acting on the particle. (2 pts)

Solution: It's clear that $\vec{F} \cdot \vec{v} = 0$ and thus $\vec{v} \cdot \frac{d}{dt} \vec{v} = 0$ which means $\frac{d}{dt} ||\vec{v}||^2 = 0$.